Semantic segmentation is a dense prediction task that sets a goal of predicting a class label for every pixel of an input image. Generally, the objective of a segmentation algorithm is to compute a label map with the spatial resolution equal to the input.
Usual evaluation metrics are:
- Mean Intersection over Union (mIoU): average of per-class IoU = TP/(TP + FP + FN) where TP, FP, FN - true positive, false positive, false negative predictions for pixels in evaluation set
- Pixel Accuracy
- Mean Average Precision
- Combination of the two
NB: evaluation of ADE20K dataset is done via calculating an average of pixel-wise accuracy and mean intersection over union.
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
SDN-M2* + COCO + MS | 88.80 | N/A | paper | N/A |
DeepLab_v3-Xception-65 + COCO | 83.58 | TensorFlow | paper | TensorFlow |
ResNet-38 Model A1-2 + COCO | 82.86 | MXNet | paper | MXNet |
ResNet-38 Model A2-2 | 80.84 | N/A | paper | MXNet |
SDN-M3 | 79.90 | N/A | paper | N/A |
DeepLab_v2 | 79.00 | Caffe | paper | Caffe |
ResNet-38 Model A1-2 | 78.76 | N/A | paper | MXNet |
ResNet-38 Model A2-1 | 78.14 | N/A | paper | MXNet |
DeepLab_v3-MobileNet-v2 + COCO | 77.33 | TensorFlow | paper | TensorFlow |
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
DeepLab_v3-Xception-65 + COCO | 87.80 | TensorFlow | paper | TensorFlow |
SDN-M3 + COCO | 86.60 | N/A | paper | N/A |
EncNet-ResNet-101 + COCO | 85.90 | N/A | paper | PyTorch |
PSPNet-ResNet-101 + COCO | 85.60 | Caffe | paper | Caffe |
ResNet-38 Model A1-2 + COCO | 84.90 | MXNet | paper | MXNet |
SDN-M3 | 83.50 | N/A | paper | N/A |
RefineNet-ResNet-152 | 83.40 | MatConvNet | paper | MatConvNet |
EncNet-ResNet-101 + MS | 82.90 | N/A | paper | PyTorch |
PSPNet-ResNet-101 | 82.60 | Caffe | paper | Caffe |
RefineNet-ResNet-101 | 82.40 | MatConvNet | paper | MatConvNet |
DeepLab_v3-MobileNet-v2 + COCO | 80.25 | TensorFlow | paper | TensorFlow |
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
EncNet-ResNet-101 + MS | 52.60 | PyTorch | paper | PyTorch |
EncNet-ResNet-101 | 51.70 | PyTorch | paper | PyTorch |
ResNet-38 Model A2-2 | 48.10 | N/A | paper | MXNet |
RefineNet-ResNet-152 | 47.30 | MatConvNet | paper | MatConvNet |
RefineNet-ResNet-101 | 47.10 | MatConvNet | paper | MatConvNet |
DeepLab_v2 | 45.70 | Caffe | paper | Caffe |
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
DeepLab_v3-Xception-65 + ImageNet | 64.08 | TensorFlow | paper | TensorFlow |
PSPNet-ResNet-269 + MS | 63.31 | N/A | paper | Caffe |
EncNet-ResNet-101 | 63.17 | N/A | paper | PyTorch |
ResNet-38 Model A2-2 | 62.45 | N/A | paper | MXNet |
PSPNet-ResNet-269 | 62.34 | N/A | paper | Caffe |
ResNet-38 Model A1-2 | 61.56 | MXNet | paper | MXNet |
PSPNet-ResNet-50 | 60.86 | Caffe | paper | Caffe |
EncNet-ResNet-50 | 60.42 | PyTorch | paper | PyTorch |
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
ResNet-38 Model A2-2 | 56.41 | N/A | paper | MXNet |
EncNet-ResNet-101 + MS | 55.67 | N/A | paper | PyTorch |
PSPNet-ResNet-101 | 55.38 | N/A | paper | Caffe |
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
ResNet-38 Model A2-2 | 80.60 | N/A | paper | MXNet |
DeepLab_v3-Xception-65 + ImageNet | 80.42 | TensorFlow | paper | TensorFlow |
ResNet-38 Model A1-2 | 78.08 | MXNet | paper | MXNet |
ResNet-38 Model A2-1 | 77.18 | N/A | paper | MXNet |
DeepLab_v3-MobileNet-v2 + COCO | 73.57 | TensorFlow | paper | TensorFlow |
Model | Score | Weights | Paper | Code |
---|---|---|---|---|
DeepLab_v3-ResNet-101 + COCO + MS | 82.70 | N/A | paper | TensorFlow |
PSPNet-ResNet-101 + COCO | 80.20 | Caffe | paper | Caffe |
DeepLab_v3-ResNet-101 | 78.51 | N/A | paper | TensorFlow |
ResNet-38 Model A2-2 | 78.40 | N/A | paper | MXNet |
PSPNet-ResNet-101 | 78.40 | Caffe | paper | Caffe |
RefineNet-ResNet-101 | 73.60 | MatConvNet | paper | MatConvNet |