-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPAisingMSC.cu
963 lines (852 loc) · 37.7 KB
/
PAisingMSC.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
//
// PAising version 1.16. This program employs multi-spin coding.
// This program is introduced in the paper:
// L.Yu. Barash, M. Weigel, M. Borovsky, W. Janke, L.N. Shchur, GPU accelerated population annealing algorithm
// This program is licensed under a Creative Commons Attribution 4.0 International License:
// http://creativecommons.org/licenses/by/4.0/
//
// Use command line option -? to print list of available command line options.
// All of the command line options are optional.
//
#include <iostream>
#include <fstream>
#include <iomanip>
#include <curand_kernel.h>
#ifdef _WIN32 // this program is compatible with any of the Windows, Unix/Linux, MacOS environments
#include <direct.h>
#else
#include <sys/stat.h>
#endif
// #define MHR // uncomment/comment to enable/disable multi-histogram reweighting
// #define AdaptiveStep // uncomment/comment to enable/disable adaptive temperature step
// #define EnergiesPopStore // uncomment/comment to enable/disable storing energies at each T
#define L 64 // linear size of the system in x,y direction
#define Ldiv2 (L/2)
#define N (L*L)
#define RNGseed time(NULL) // Use 32-bit integer as a seed for random number generation, e.g., time(NULL)
typedef curandStatePhilox4_32_10_t RNGState;
#define MSbits 32 // Use 8, 16, 32 or 64 Multi-spin bits per word
unsigned int EQsweeps = 100; // number of equilibration sweeps
double Binit = 0; // initial inverse temperature
double Bfin = 1; // final inverse temperature
double dBinit = 0.005; // inverse temperature step
#ifdef AdaptiveStep
double MinOverlap = 0.85; // minimal value of acceptable overlap of energy histograms
double MaxOverlap = 0.87; // maximal value of acceptable overlap of energy histograms
#endif
int Rinit = 20000; // Initial size of population of replicas
int runs = 1; // number of population annealing algorithm independent runs
int OutputPrecision = 11; // precision (number of digits) of the output
const unsigned int AA = 1664525; // linear congruential generator parameters
const unsigned int CC = 1013904223;
#ifdef MHR
const short MHR_Niter = 1; // number of iterations for multi-histogram analysis (single iteration is usually sufficient)
#endif
const int boltzTableL = 2; // Boltzmann factor table length
const int nBmax = 10000; // number of temperature steps should not exceed nBmax
texture<unsigned int,1,cudaReadModeElementType> boltzT;
using namespace std;
#define EQthreads 128 // number of threads per block for the equilibration kernel
#define Nthreads 1024 // number of threads per block for the parallel reduction algorithm
// Use Nthreads=1024 for CUDA compute capability 2.0 and above; Nthreads=512 for old devices with CUDA compute capability 1.x.
double* Qd; double* ioverlapd;
#if MSbits == 8
#define MultiSpin signed char
#elif MSbits == 16
#define MultiSpin signed short
#elif MSbits == 32
#define MultiSpin signed int
#elif MSbits == 64
#define MultiSpin signed long long int
#endif
// struct Replica covers all information about the replica including its configuration, sublattice magnetizations,
// internal energy and number of replica's offspring
struct Replica{
MultiSpin gA[N/2]; // sublattice configurations with multipsin-coding = one value in array represents
MultiSpin gB[N/2]; // spins of 8 different replicas in the same site in lattice
int IE[MSbits]; // internal energy
int M[MSbits]; // magnetization
unsigned int Roff[MSbits]; // number of replica's offspring
union{double ValDouble[2]; unsigned int ValInt[MSbits+2];} parSum; // these variables are used for storing sums
bool isActive[MSbits]; // isActive[i] determines if the i-th replica is active
};
// CUDA error checking macro
#define CUDAErrChk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess) {
fprintf(stderr,"GPUassert: %s ; %s ; line %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
template <class sometype> __inline__ __device__ sometype smallblockReduceSum(sometype val) // use when blockDim.x < 32
{ // blockDim.x must be a power of 2
static __shared__ sometype shared[32];
shared[threadIdx.x] = val;
for (unsigned int stride = blockDim.x >> 1; stride > 0; stride >>= 1){
__syncthreads(); if (threadIdx.x < stride) shared[threadIdx.x] += shared[threadIdx.x+stride];
}
__syncthreads(); return shared[0];
}
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300)
template <class sometype> __inline__ __device__ sometype warpReduceSum(sometype val)
{
for (int offset = warpSize/2; offset > 0; offset /= 2) val += __shfl_down_sync(0xFFFFFFFF, val, offset);
return val;
}
template <class sometype> __inline__ __device__ sometype blockReduceSum(sometype val) // use when blockDim.x is divisible by 32
{
static __shared__ sometype shared[32]; // one needs to additionally synchronize threads after execution
int lane = threadIdx.x % warpSize; // in the case of multiple use of blockReduceSum in a single kernel
int wid = threadIdx.x / warpSize;
val = warpReduceSum(val);
if (lane==0) shared[wid]=val;
__syncthreads();
val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : 0;
if (wid==0) val = warpReduceSum(val);
return val;
}
#else
template <class sometype> __inline__ __device__ sometype blockReduceSum(sometype val) // blockDim.x must be a power of 2
{
static __shared__ sometype shared[Nthreads];
shared[threadIdx.x] = val;
for (unsigned int stride = blockDim.x >> 1; stride > 0; stride >>= 1){
__syncthreads(); if (threadIdx.x < stride) shared[threadIdx.x] += shared[threadIdx.x+stride];
}
__syncthreads(); return shared[0];
}
#endif
#if (__CUDACC_VER_MAJOR__ < 8) || ( defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600 )
__device__ double atomicAdd(double* address, double val) // allows to use atomicAdd operation for double precision floating point values
{
unsigned long long int* address_as_ull = (unsigned long long int*)address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed)));
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 320 && MSbits == 64)
__device__ unsigned long long int atomicXor(unsigned long long int* address, unsigned long long int val) // allows to use atomicXor operation for 64-bit integers
{
unsigned int val1,val2; val1 = val & 0xFFFFFFFF; val2 = val>>32;
val1 = atomicXor((unsigned int*)address,val1);
val2 = atomicXor((unsigned int*)address+1,val2);
return (unsigned long long int)val1 + ((unsigned long long int)val2)<<32;
}
#endif
__global__ void ReplicaInit(Replica* Rd, int rg, int R, unsigned long long rng_seed, unsigned long long initial_sequence){ // initialization of spin lattices of all replicas
unsigned int B = blockIdx.x, t = threadIdx.x;
RNGState localrng; curand_init(rng_seed,initial_sequence+(t+B*EQthreads),0,&localrng);
for (unsigned int idx = t; idx < (N/2); idx += EQthreads){
#if MSbits == 8
Rd[B].gA[idx] = curand(&localrng) & 0xFF;
Rd[B].gB[idx] = curand(&localrng) & 0xFF;
#elif MSbits == 16
Rd[B].gA[idx] = curand(&localrng) & 0xFFFF;
Rd[B].gB[idx] = curand(&localrng) & 0xFFFF;
#elif MSbits == 32
Rd[B].gA[idx] = curand(&localrng);
Rd[B].gB[idx] = curand(&localrng);
#elif MSbits == 64
Rd[B].gA[idx] = (((unsigned long long int)curand(&localrng))<<32) + curand(&localrng) ;
Rd[B].gB[idx] = (((unsigned long long int)curand(&localrng))<<32) + curand(&localrng) ;
#endif
}
if(t < MSbits) if((B*MSbits+t)<R) Rd[B].isActive[t] = true; else Rd[B].isActive[t] = false;
}
// parallel spin update
__global__ void checkKerALL(Replica* Rd, int rg, unsigned int sweeps, unsigned long long rng_seed, unsigned long long initial_sequence) // equilibration process
{
MultiSpin mspin; unsigned int B = blockIdx.x, t = threadIdx.x, ran, idx, i1, i3, i4, tx, ty; // B is replica index
RNGState localrng; curand_init(rng_seed,initial_sequence+(t+blockIdx.x*EQthreads),0,&localrng);
for(int sweep=0; sweep<sweeps; sweep++){ // sweeps loop
// sublattice A
for (idx = t; idx < (N/2); idx += EQthreads){ // sublattice A
ty = idx / Ldiv2; tx = idx - ty * Ldiv2;
i1 = ty * Ldiv2 + ((ty&1) ? (tx + 1) : (tx + Ldiv2 - 1)) % Ldiv2;
i3 = ((ty + L - 1) % L) * Ldiv2 + tx; i4 = ((ty + 1) % L) * Ldiv2 + tx;
mspin = Rd[B].gA[idx];
// detecting anti-parallel orientations with NN (Ii = S ^ Ni)
MultiSpin I1 = mspin ^ Rd[B].gB[i1]; // left- or right-neighbour in B
MultiSpin I2 = mspin ^ Rd[B].gB[idx]; // right- or left-neighbour spins in the sublattice B
MultiSpin I3 = mspin ^ Rd[B].gB[i3]; // lower-neighbour spins in the sublattice B
MultiSpin I4 = mspin ^ Rd[B].gB[i4]; // upper-neighbour spins in the sublattice B
// performing summation of anti-parallel couplings
MultiSpin x12 = I1 ^ I2;
MultiSpin x34 = I3 ^ I4;
MultiSpin a12 = I1 & I2;
MultiSpin a34 = I3 & I4;
MultiSpin sum0 = x12 ^ x34;
MultiSpin sum1 = x12 & x34 ^ a12 ^ a34;
MultiSpin sum2 = a12 & a34;
MultiSpin cond4 = 0;
MultiSpin cond8 = 0; MultiSpin imask=0x1; ran = curand(&localrng);
for (unsigned char i = 0; i < MSbits; ++i){
cond4 |= (-(ran < tex1Dfetch(boltzT, 0))) & imask;
cond8 |= (-(ran < tex1Dfetch(boltzT, 1))) & imask;
imask <<= 1; ran = AA * ran + CC;
}
// acceptance mask
MultiSpin Acc = (sum1|sum2) | ( (~(sum1|sum2)) & ((sum0&cond4) | (~sum0&cond8)) );
// Metropolis update + store new configuration to global memory
Rd[B].gA[idx] = mspin ^ Acc;
}
__syncthreads();
// sublattice B
for (idx = t; idx < (N/2); idx += EQthreads){ // sublattice B
ty = idx / Ldiv2; tx = idx - ty * Ldiv2;
i1 = ty * Ldiv2 + ((ty&1) ? (tx + Ldiv2 - 1) : (tx + 1)) % Ldiv2;
i3 = ((ty + L - 1) % L) * Ldiv2 + tx; i4 = ((ty + 1) % L) * Ldiv2 + tx;
mspin = Rd[B].gB[idx];
MultiSpin I1 = mspin ^ Rd[B].gA[i1]; // left- or right-neighbour in A
MultiSpin I2 = mspin ^ Rd[B].gA[idx];// right- or left-neighbour spins in the sublattice A
MultiSpin I3 = mspin ^ Rd[B].gA[i3]; // lower-neighbour spins in the sublattice A
MultiSpin I4 = mspin ^ Rd[B].gA[i4]; // upper-neighbour spins in the sublattice A
MultiSpin x12 = I1 ^ I2;
MultiSpin x34 = I3 ^ I4;
MultiSpin a12 = I1 & I2;
MultiSpin a34 = I3 & I4;
MultiSpin sum0 = x12 ^ x34;
MultiSpin sum1 = x12 & x34 ^ a12 ^ a34;
MultiSpin sum2 = a12 & a34;
MultiSpin cond4 = 0;
MultiSpin cond8 = 0; MultiSpin imask=0x1; ran = curand(&localrng);
for (unsigned char i = 0; i < MSbits; ++i){
cond4 |= (-(ran < tex1Dfetch(boltzT, 0))) & imask;
cond8 |= (-(ran < tex1Dfetch(boltzT, 1))) & imask;
imask <<= 1; ran = AA * ran + CC;
}
MultiSpin Acc = (sum1|sum2) | ( (~(sum1|sum2)) & ((sum0&cond4) | (~sum0&cond8)) );
Rd[B].gB[idx] = mspin ^ Acc;
}
__syncthreads();
}
}
__global__ void energyKer(Replica* Rd) // calculation of energy and magnetization for each replica
{
int e, m; unsigned int t = threadIdx.x, idx, iL, iU, B = blockIdx.x, tx, ty;
MultiSpin sum0, sum1, sum2, sA, sB, Ai2, Bi2, Ai4, Bi4;
for (idx = t; idx < (N/2); idx += EQthreads){
if(t < EQthreads){
sA = Rd[B].gA[idx]; sB = Rd[B].gB[idx];
ty = idx / Ldiv2; tx = idx - ty * Ldiv2;
iL = ty * Ldiv2 + (tx + Ldiv2 - 1) % Ldiv2;
iU = ((ty + 1) % L) * Ldiv2 + tx;
if(ty&1){ Ai2 = sB; Bi2 = Rd[B].gA[iL]; }
else{ Ai2 = Rd[B].gB[iL]; Bi2 = sA; }
Ai4 = Rd[B].gB[iU]; Bi4 = Rd[B].gA[iU];
// detecting anti-parallel orientations
MultiSpin I1 = sA ^ Ai2;
MultiSpin I2 = sA ^ Ai4;
MultiSpin I3 = sB ^ Bi2;
MultiSpin I4 = sB ^ Bi4;
// performing summation of anti-parallel couplings
MultiSpin x12 = I1 ^ I2;
MultiSpin x34 = I3 ^ I4;
MultiSpin a12 = I1 & I2;
MultiSpin a34 = I3 & I4;
sum0 = x12 ^ x34;
sum1 = x12 & x34 ^ a12 ^ a34;
sum2 = a12 & a34;
}
// calculating energy contributions for replicas
for (unsigned char i = 0; i < MSbits; ++i){
if(t < EQthreads){
e = 2*((int)(sum0&0x1) + 2*(int)(sum1&0x1) + 4*(int)(sum2&0x1)) - 4;
m = 2*((int)(sA&0x1) + (int)(sB&0x1)) - 2;
} else e = m = 0;
e = blockReduceSum<int>(e); __syncthreads();
m = blockReduceSum<int>(m); __syncthreads();
if (t == 0){
if (idx==t){
Rd[B].IE[i] = e;
Rd[B].M[i] = m;
}else{
Rd[B].IE[i] += e;
Rd[B].M[i] += m;
}
}
// bit shift operation => moving to next replica in bit string
sum0 >>= 1; sum1 >>= 1; sum2 >>= 1;
sA >>= 1; sB >>= 1;
}
}
}
__global__ void QKer(Replica* Rd, int rg, double dB, double Emean, int CalcPart, double* Qd) // calculation of partition function ratio
{
if(CalcPart==0){ // first part of the calculation
double factor; int idx = blockIdx.x; int br = threadIdx.x; // summation of exponential
factor = Rd[idx].isActive[br] ? exp(-dB*(Rd[idx].IE[br]-Emean)) : 0.0 ; // Boltzmann-like factors
#if MSbits < 32
factor = smallblockReduceSum<double>(factor);
#else
factor = blockReduceSum<double>(factor);
#endif
if (br == 0) Rd[idx].parSum.ValDouble[0] = factor; // is saved to global memory
} else if(CalcPart==1){ // second part of the calculation
double factor; int t = threadIdx.x; int b = blockIdx.x;
int idx = t + Nthreads * b;
factor = (idx < rg) ? Rd[idx].parSum.ValDouble[0]: 0.0;
factor = blockReduceSum<double>(factor);
if(t == 0 ) Rd[idx].parSum.ValDouble[1] = factor; // sum for all threads in current block is saved to global memory
} else{ // third part of the calculation, summation of the partial sums
double factor; int j, t = threadIdx.x; double MyParSum = 0;
for (j=0; j*Nthreads < rg; j += Nthreads){
factor = (t+j)*Nthreads < rg ? Rd[(t+j)*Nthreads].parSum.ValDouble[1] : 0.0;
factor = blockReduceSum<double>(factor); __syncthreads();
MyParSum += factor;
}
if(t==0) *Qd = MyParSum;
}
}
__global__ void CalcTauKer(Replica* Rd, int Rinit, int R, int rg, double lnQ, double dB, unsigned long long rng_seed, unsigned long long initial_sequence) // calculation of numbers of copies for all replicas
{
int t = threadIdx.x; int b = blockIdx.x;
unsigned char br = blockIdx.y; // multispin replica index
int idx = t + Nthreads * b; double mu, mufloor;
if (idx < rg) if (Rd[idx].isActive[br]){ // nearest integer resampling
mu = ((double)Rinit)/R*exp(-dB*(double)Rd[idx].IE[br] - lnQ);
mufloor = floor(mu);
RNGState localrng; curand_init(rng_seed,initial_sequence+(br+MSbits*idx),0,&localrng);
if(curand_uniform_double(&localrng) < (mu-mufloor))
Rd[idx].Roff[br] = mufloor + 1;
else Rd[idx].Roff[br] = mufloor; // number of copies
} else Rd[idx].Roff[br] = 0;
}
__global__ void CalcParSum(Replica* Rd, int rg, int CalcPart, int* Rnew)
{
if(CalcPart==0){ // first part of the calculation
unsigned int parS; int t = threadIdx.x; int b = blockIdx.x;
parS = Rd[b].Roff[t]; // (Rd[b].Roff[0] + Rd[b].Roff[1] + ... + Rd[b].Roff[MSbits-1]) is saved to global memory
#if MSbits < 32
parS = smallblockReduceSum<unsigned int>(parS);
#else
parS = blockReduceSum<unsigned int>(parS);
#endif
if(t==0) Rd[b].parSum.ValInt[MSbits] = parS;
} else if(CalcPart==1){ // second part of the calculation
unsigned int parS; int t = threadIdx.x; int b = blockIdx.x; int idx = t + b*Nthreads;
parS = (idx < rg) ? Rd[idx].parSum.ValInt[MSbits] : 0;
parS = blockReduceSum<unsigned int>(parS);
// sum of partial sums for replica groups b*Nthreads,b*Nthreads+1,...,(b+1)*Nthreads-1 is saved to global memory.
if(t==0) Rd[idx].parSum.ValInt[MSbits+1] = parS;
} else{ // third part of the calculation
unsigned int parS; int j, t = threadIdx.x, b = blockIdx.x;
unsigned char br = blockIdx.y; __shared__ unsigned int val;
int idx = t + Nthreads * b; unsigned int MyParSum = 0;
for (j = 0; j<b; j+=Nthreads){ // we sum of Roff for all blocks from 0 to (b-1) and for all multi-spin indices.
parS = (t+j < b) ? Rd[(t+j)*Nthreads].parSum.ValInt[MSbits+1] : 0;
parS = blockReduceSum<unsigned int>(parS);
if(t==0) val = parS; __syncthreads(); MyParSum += val;
}
if(idx < rg){
for(j=Nthreads*b;j<idx;j++) MyParSum+=Rd[j].parSum.ValInt[MSbits]; // we add parSum[MSbits] for current block threads from 0 to (t-1)
for(j=0;j<br;j++) MyParSum+=Rd[idx].Roff[j]; // we add Roff for j = 0,1,..., br-1.
Rd[idx].parSum.ValInt[br] = MyParSum; // we save partial sum
if(idx==(rg-1)) if(br==(MSbits-1)) *Rnew = MyParSum + Rd[idx].Roff[br]; // we save new population size
}
}
}
__global__ void resampleKer(Replica* Rd, Replica* RdNew, int rg) // renumeration and copying of the replicas (the main part of the resampling process)
{
int t = threadIdx.x + blockIdx.z*blockDim.x; // index of spin variable (from 0 -> N/2-1)
int bx = blockIdx.x; // represents index of group of replicas (j)
signed char by = blockIdx.y; // represents index of replica in group/word (k)
int it_k, it_j;
#if MSbits == 64
unsigned long long int mask = 0x1; mask <<= by; // mask for selecting spin from old population
unsigned long long int copy_sourceA = mask & Rd[bx].gA[t]; // selected spin from sublattice A
unsigned long long int copy_sourceB = mask & Rd[bx].gB[t]; // and B
#else
unsigned int mask = 0x1; mask <<= by; // mask for selecting spin from old population
unsigned int copy_sourceA = mask & Rd[bx].gA[t]; // selected spin from sublattice A
unsigned int copy_sourceB = mask & Rd[bx].gB[t]; // and B
#endif
for (int p = 0; p < Rd[bx].Roff[by]; ++p){
it_k = (Rd[bx].parSum.ValInt[by] + p) / rg;
it_j = (Rd[bx].parSum.ValInt[by] + p) % rg;
#if MSbits == 8
mask = 0x1; mask <<= (it_k + ((t&3)<<3));
if(copy_sourceA!=0) atomicXor((unsigned int*)&(RdNew[it_j].gA[t-(t&3)]),mask);
if(copy_sourceB!=0) atomicXor((unsigned int*)&(RdNew[it_j].gB[t-(t&3)]),mask);
#elif MSbits == 16
mask = 0x1; mask <<= (it_k + ((t&1)<<4));
if(copy_sourceA!=0) atomicXor((unsigned int*)&(RdNew[it_j].gA[t-(t&1)]),mask);
if(copy_sourceB!=0) atomicXor((unsigned int*)&(RdNew[it_j].gB[t-(t&1)]),mask);
#elif MSbits == 32
mask = 0x1; mask <<= it_k;
if(copy_sourceA!=0) atomicXor((unsigned int*)&(RdNew[it_j].gA[t]),mask);
if(copy_sourceB!=0) atomicXor((unsigned int*)&(RdNew[it_j].gB[t]),mask);
#elif MSbits == 64
mask = 0x1; mask <<= it_k;
if(copy_sourceA!=0) atomicXor((unsigned long long int*)&(RdNew[it_j].gA[t]),mask);
if(copy_sourceB!=0) atomicXor((unsigned long long int*)&(RdNew[it_j].gB[t]),mask);
#endif
if(t==0) RdNew[it_j].isActive[it_k] = true;
else if(t==1) RdNew[it_j].IE[it_k] = Rd[bx].IE[by];
}
}
__global__ void CalcAverages(Replica* Repd, int rg, double* Averages) // calculation of observables via averaging over the population
{
int t = threadIdx.x, b = blockIdx.x, by = blockIdx.y; int idx = t + Nthreads * b;
double currE,currE2,currM,currM2,currM4;
if(idx<rg) if(Repd[idx].isActive[by]){
currE = Repd[idx].IE[by]; currM = Repd[idx].M[by]; if(currM<0) currM=-currM;
} else{ currE = 0; currM = 0;} else{ currE = 0; currM = 0;}
currE2 = currE*currE; currM2 = currM*currM; currM4 = currM2*currM2;
currE = blockReduceSum<double>(currE); if(t==0) atomicAdd(&Averages[0], currE); __syncthreads();
currE2 = blockReduceSum<double>(currE2); if(t==0) atomicAdd(&Averages[1], currE2); __syncthreads();
currM = blockReduceSum<double>(currM); if(t==0) atomicAdd(&Averages[2], currM); __syncthreads();
currM2 = blockReduceSum<double>(currM2); if(t==0) atomicAdd(&Averages[3], currM2); __syncthreads();
currM4 = blockReduceSum<double>(currM4); if(t==0) atomicAdd(&Averages[4], currM4);
}
#ifdef MHR
__global__ void UpdateShistE(Replica* Repd, int rg, int* ShistE) // adding energy histogram of the current temperature step for the MHR analysis
{
int t = threadIdx.x, b = blockIdx.x, by = blockIdx.y; int idx = t + Nthreads * b;
if(idx<rg) if(Repd[idx].isActive[by]){
atomicAdd(&ShistE[(2*N+Repd[idx].IE[by])/4],1);
}
}
#endif
#ifdef AdaptiveStep
__global__ void HistogramOverlap(Replica* Repd, int Rinit, int R, int rg, double lnQ, double dB, double* overlap) // calculating histogram overlap
{
double PartialOverlap;
int t = threadIdx.x, idx = threadIdx.x + Nthreads * blockIdx.x, by = blockIdx.y;
if(idx<rg && Repd[idx].isActive[by])
PartialOverlap = min(1.0,((double)Rinit)/R*exp(-dB*(double)Repd[idx].IE[by] - lnQ));
else PartialOverlap = 0;
PartialOverlap = blockReduceSum<double>(PartialOverlap);
if(t==0) atomicAdd(overlap,PartialOverlap);
}
double CalcOverlap(Replica* Rep_d, double dB, int R, double Emean){ // Calculates histogram overlap
double q, lnQ, ioverlaph;
int rg = (int)ceil(R/(float)MSbits);
int NblocksR = (int)ceil(rg/(double)Nthreads);
dim3 DimGridR(NblocksR,MSbits,1);
QKer <<< rg, MSbits >>> (Rep_d, rg, dB, Emean, 0, Qd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
QKer <<< NblocksR, Nthreads >>> (Rep_d, rg, dB, Emean, 1, Qd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
QKer <<< 1, Nthreads >>> (Rep_d, rg, dB, Emean, 2, Qd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CUDAErrChk( cudaMemcpy(&q,Qd,sizeof(double),cudaMemcpyDeviceToHost) );
lnQ = -dB * Emean + log(q) - log((double)R);
CUDAErrChk( cudaMemset(ioverlapd, 0, sizeof(double)) );
HistogramOverlap<<<DimGridR,Nthreads>>>(Rep_d, Rinit, R, rg, lnQ, dB, ioverlapd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CUDAErrChk( cudaMemcpy(&ioverlaph,ioverlapd,sizeof(double),cudaMemcpyDeviceToHost) );
return (double)ioverlaph/R;
}
#endif
char *optarg; int opterr = 1, optind = 1, optopt, optreset;
int getopt(int nargc, char * const nargv[], const char *ostr)
{
static char *place = (char*)""; const char *oli;
if (optreset || !*place) {
optreset = 0;
if (optind >= nargc || *(place = nargv[optind]) != '-') { place = (char*)""; return (-1); }
if (place[1] && *++place == '-') { ++optind; place = (char*)""; return (-1); }
}
if ((optopt = (int)*place++) == (int)':' || !(oli = strchr(ostr, optopt))) {
if (optopt == (int)'-') return (-1);
if (!*place) ++optind;
if (opterr && *ostr != ':') (void)printf("illegal option -- %c\n", optopt);
return ((int)'?');
}
if (*++oli != ':') { optarg = NULL; if (!*place) ++optind; }
else {
if (*place) optarg = place; else if (nargc <= ++optind) {
place = (char*)""; if (*ostr == ':') return ((int)':');
if (opterr) (void)printf("option requires an argument -- %c\n", optopt);
return ((int)'?');
}
else optarg = nargv[optind];
place = (char*)""; ++optind;
}
return (optopt);
}
void PrintParameterUsage(){
cout << " Usage: PAisingMSC [options]\n"
<< " Note: all of the options are optional. Default parameter values are listed in the head of the source code. \n"
<< " Possible command line options are:\n\n"
<< " -R Rinit ( Rinit = initial size of population of replicas )\n"
<< " -t EQsweeps ( EQsweeps = number of equilibration sweeps )\n"
<< " -d dBinit ( dBinit = inverse temperature step )\n"
<< " -f Bfin ( Bfin = final value of inverse temperature )\n"
<< " -M runs ( runs = number of population annealing algorithm independent runs )\n"
<< " -s RNGseed ( RNGseed = seed for random number generation )\n"
<< " -P OutputPrecision ( OutputPrecision = precision (number of digits) of the output )\n"
<< " -o dataDirectory ( dataDirectory = data directory name )\n";
}
int main(int argc, char** argv)
{
// data directory name + create
char dataDir[200]; unsigned long long rng_seed = RNGseed; int optdir = 0;
int optc, opti; double optf;
while ((optc = getopt (argc, argv, "R:t:d:f:M:s:P:o:?")) != -1) // Processing optional command line options
switch (optc)
{
case 'R': opti = atoi(optarg); if(opti) Rinit = opti; break; // -R Rinit
case 't': opti = atoi(optarg); EQsweeps = opti; break; // -t EQsweeps
case 'd': optf = atof(optarg); if(optf > 0.0) dBinit = optf; break; // -d dBinit
case 'f': optf = atof(optarg); if(optf > 0.0) Bfin = optf; break; // -f Bfin
case 'M': opti = atoi(optarg); if(opti) runs = opti; break; // -M runs
case 's': opti = atoi(optarg); if(opti) rng_seed = opti; break; // -s RNGseed
case 'P': opti = atoi(optarg); if(opti) OutputPrecision = opti; break; // -P OutputPrecision
case 'o': if(optarg[strlen(optarg)-1]=='/') sprintf(dataDir,"%s",optarg); // -o dataDir
else sprintf(dataDir,"%s/",optarg); optdir = 1; break;
case '?': PrintParameterUsage(); return 1;
}
if(optind < argc){
for (opti = optind; opti < argc; opti++) fprintf(stderr,"Non-option argument %s\n", argv[opti]);
return 1;
}
#ifdef AdaptiveStep
if(!optdir) sprintf(dataDir, "./dataMSC_L%d_R%d_EqSw%d/", L, Rinit, EQsweeps);
#else
if(!optdir) sprintf(dataDir, "./dataMSC_L%d_R%d_EqSw%d_dB%f/", L, Rinit, EQsweeps, dBinit);
#endif
#if defined(_WIN32)
_mkdir(dataDir);
#else
mkdir(dataDir, 0777);
#endif
int rmin=0, rmax=runs-1; unsigned long long initial_sequence = 0; int rg;
double B[nBmax], Binc[nBmax]; B[0]=Binc[0]=Binit; double totPop=0;
// creating data arrays for thermodynamic variables and errors
double E[nBmax]; double M[nBmax]; double M2[nBmax]; double M4[nBmax];
double C[nBmax];
double lnQ[nBmax]; // partition function ratio
double S[nBmax]; // entropy
double BF[nBmax]; // dimensionless free energy estimate
BF[0] = - N*log(2.0); // its value at infinite temperature
int R[nBmax]; // population size
int nB;
// CUDAErrChk( cudaSetDevice(0) ); // uncomment to explicitly select device number in a setup with multiple cards
CUDAErrChk(cudaDeviceSetCacheConfig(cudaFuncCachePreferL1)); // prefer larger L1 cache and smaller shared memory
// GPU execution time
cudaEvent_t start, stop; float Etime;
CUDAErrChk( cudaEventCreate(&start) );
CUDAErrChk( cudaEventCreate(&stop) );
// start evaluation time measurement
cudaEventRecord(start, 0);
double *Averages; double Averages_h[5]; int* Ridev;
CUDAErrChk( cudaMalloc((void**)&Averages,5*sizeof(double)) );
CUDAErrChk( cudaMalloc((void**)&Qd,sizeof(double)) );
CUDAErrChk( cudaMalloc((void**)&Ridev,sizeof(int)) );
CUDAErrChk( cudaMalloc((void**)&ioverlapd,sizeof(double)) );
// random seed
cout <<"RNG initial seed: "<< rng_seed<<"\n";
R[0] = Rinit;
cout << "Memory use of one replica: " << sizeof(Replica) / 1024.0 / (double)MSbits << " kB \n";
cout << "Memory use of the entire population of " << R[0] << " replicas: "
<< ceil(R[0]/(double)MSbits)*sizeof(Replica) / 1024.0 / 1024.0 << " MB \n"; fflush(stdout);
// creating energy spectrum for multi-histogram reweighting
#ifdef MHR
int Ei[N+1];
for (int i = 0; i < N+1; ++i){
Ei[i] = 4*i - 2*N;
}
#endif
Replica* Rep_d;
unsigned int boltzGPU[boltzTableL]; // Boltzman factor table - host version
unsigned int* boltztext;
// memory allocation for Boltzmann factor table
CUDAErrChk( cudaMalloc((void **)&boltztext, boltzTableL * sizeof(unsigned int)) );
// binding references (global & texture memory buffers)
CUDAErrChk( cudaBindTexture(NULL,boltzT,boltztext,boltzTableL * sizeof(unsigned int)) );
int Ethreads = 1; while(Ethreads < EQthreads) Ethreads <<= 1;
for (int r = rmin; r <= rmax; ++r){
rg = (int)ceil(R[0]/(float)MSbits); // number of replica groups (R / MSbits)
double sumlnQ = 0.0; double q; double Emean = 0.0;
CUDAErrChk( cudaMalloc((void **)&Rep_d,rg*sizeof(Replica)) );
int NblocksR = (int)ceil(rg/(float)Nthreads);
ReplicaInit <<< rg, EQthreads >>> (Rep_d,rg,R[0],rng_seed,initial_sequence); initial_sequence+=rg*EQthreads;
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
// compute energy of all replicas at zero temperature (for 1st resampling)
energyKer <<< rg, Ethreads >>> (Rep_d);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
// array for summing the energy histograms over inverse temperatures
#ifdef MHR
int ShistE[N+1]; int* ShistEd;
CUDAErrChk( cudaMalloc((void**)&ShistEd,(N+1)*sizeof(int)) );
CUDAErrChk( cudaMemset(ShistEd,0,(N+1)*sizeof(int)) );
dim3 DimGridR(NblocksR,MSbits,1);
UpdateShistE<<<DimGridR,Nthreads>>> (Rep_d, rg, ShistEd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
#endif
// ------------------------------------------------------------------
// population annealing
// ------------------------------------------------------------------
int i=1, iprev=0; double deltaBeta=dBinit; B[i]=Binc[i]=B[iprev]+deltaBeta;
while(B[i]<=Bfin) {
// Boltzmann factor tabulation (only two are relevant: exp(-4*B);exp(-8*B))
boltzGPU[0] = ceil(4294967296.*exp(-4*B[i]));
boltzGPU[1] = ceil(4294967296.*exp(-8*B[i]));
// copying table to texture memory - boltztext is bounded with boltzT
CUDAErrChk( cudaMemcpy(boltztext, boltzGPU, boltzTableL * sizeof(unsigned int),cudaMemcpyHostToDevice) );
// compute the partition function ratio - Q
NblocksR = (int)ceil(rg/(float)Nthreads);
dim3 DimGridR(NblocksR,MSbits,1);
QKer <<< rg, MSbits >>> (Rep_d, rg, B[i] - B[i-1], Emean, 0, Qd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
QKer <<< NblocksR, Nthreads >>> (Rep_d, rg, B[i] - B[i-1], Emean, 1, Qd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
QKer <<< 1, Nthreads >>> (Rep_d, rg, B[i] - B[i-1], Emean, 2, Qd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CUDAErrChk( cudaMemcpy(&q,Qd,sizeof(double),cudaMemcpyDeviceToHost) );
lnQ[i] = -(B[i] - B[i-1])*Emean + log(q) -log((double)R[i-1]);
CalcTauKer <<< DimGridR, Nthreads >>> (Rep_d, Rinit, R[i-1], rg, lnQ[i], B[i] - B[i-1],rng_seed,initial_sequence); initial_sequence+=rg*MSbits;
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
// resampling new population
CalcParSum <<< rg, MSbits >>> (Rep_d, rg, 0, Ridev);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CalcParSum <<< NblocksR, Nthreads >>> (Rep_d, rg, 1, Ridev);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CalcParSum <<< DimGridR, Nthreads >>> (Rep_d, rg, 2, Ridev);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CUDAErrChk( cudaMemcpy(&R[i], Ridev, sizeof(int),cudaMemcpyDeviceToHost) );
dim3 DimGridRes(rg,MSbits,N/2/EQthreads); // resampleKer configuration with old value of rg
rg = (int)ceil(R[i]/(float)MSbits); // updated number of replica groups
DimGridR.x = NblocksR = (int)ceil(rg/(float)Nthreads); Replica* RepNew_d;
CUDAErrChk( cudaMalloc((void**)&RepNew_d,rg*sizeof(Replica)) );
CUDAErrChk( cudaMemset(RepNew_d,0,rg*sizeof(Replica)) );
CUDAErrChk( cudaDeviceSynchronize() );
resampleKer <<< DimGridRes, EQthreads >>> (Rep_d, RepNew_d, rg);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
Replica* RepDel = Rep_d;
Rep_d = RepNew_d;
CUDAErrChk( cudaFree(RepDel) );
// equilibrate replicas for certain number of sweeps
checkKerALL <<< rg, EQthreads >>> (Rep_d,rg,EQsweeps,rng_seed,initial_sequence); initial_sequence+=rg*EQthreads;
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
// compute observables (E,M,O,F)
// compute energy and magnetization of all replicas
energyKer <<< rg, Ethreads >>> (Rep_d);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
// saving results - energies
#ifdef EnergiesPopStore
Replica* Rep_h = (Replica*)malloc(rg*sizeof(Replica));
CUDAErrChk( cudaMemcpy(Rep_h, Rep_d, rg*sizeof(Replica),cudaMemcpyDeviceToHost) );
ofstream results;
char str[100];
char str2[100];
strcpy(str, dataDir);
sprintf(str2,"PA_energies_%d.dat",i);
strcat(str,str2);
results.open(str);
results.precision(OutputPrecision);
for (int j = 0; j < rg; ++j)
for (int l = 0; l < MSbits; ++l)
if(Rep_h[j].isActive[l]) results << Rep_h[j].IE[l] << " ";
results.close(); free(Rep_h);
#endif
#ifdef MHR
UpdateShistE<<<DimGridR,Nthreads>>>(Rep_d, rg, ShistEd);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
#endif
CUDAErrChk( cudaMemset(Averages, 0, 5*sizeof(double)) );
CalcAverages<<<DimGridR,Nthreads>>>(Rep_d,rg,Averages);
CUDAErrChk( cudaPeekAtLastError() );
CUDAErrChk( cudaDeviceSynchronize() );
CUDAErrChk( cudaMemcpy(Averages_h,Averages,5*sizeof(double),cudaMemcpyDeviceToHost) );
E[i] = Emean = Averages_h[0] / R[i];
C[i] = (Averages_h[1] / R[i] - E[i]*E[i]) * B[i] * B[i];
M[i] = Averages_h[2] / R[i];
M2[i] = Averages_h[3] / R[i];
M4[i] = Averages_h[4] / R[i];
// dimensionless free energy
sumlnQ -= lnQ[i];
BF[i] = - N*log(2.0) + sumlnQ;
// entropy
S[i] = B[i]*E[i] - BF[i];
iprev=i; totPop+=R[i]; i++;
if(i>=nBmax){
#ifdef AdaptiveStep
fprintf(stderr,"Error: number of temperature steps exceeds nBmax=%d.\n Please consider increasing the population size or decreasing the value of MinOverlap or increasing the value of nBmax.\n",nBmax);
#else
fprintf(stderr,"Error: number of temperature steps exceeds nBmax=%d.\n Please consider increasing the inverse temperature step or increasing the value of nBmax.\n",nBmax);
#endif
return 1;
}
if (r==rmin){
#ifdef AdaptiveStep
double overlap, dBmin = 0, dBmax = deltaBeta, dBmean;
while(1){
overlap = CalcOverlap ( Rep_d, dBmax, R[iprev], Emean );
if ( (overlap >= MaxOverlap) && (B[iprev] + dBmax < Bfin) ) dBmax *= 1.1; else break;
}
if ( overlap >= MinOverlap ) dBmean = dBmax;
else while(1){ // obtaining optimal inverse temperature step with the bisection method
dBmean = 0.5 * (dBmin + dBmax);
overlap = CalcOverlap ( Rep_d, dBmean, R[iprev], Emean );
if ( overlap < MinOverlap ) dBmax = dBmean;
else if ( overlap >= MaxOverlap ) dBmin = dBmean;
else break;
}
if( (B[iprev] < Bfin) && (B[iprev] + dBmean > Bfin) ) deltaBeta = Bfin - B[iprev]; else deltaBeta = dBmean;
#endif
B[i] = Binc[i] = B[iprev] + deltaBeta;
} else B[i]=Binc[i];
}
CUDAErrChk( cudaFree(Rep_d) );
nB=i;
// saving results
{
ofstream results;
char str[100];
char str2[100];
strcpy(str, dataDir);
sprintf(str2, "PA_results_run_%d.dat", r);
strcat(str,str2);
results.open(str);
results.precision(OutputPrecision);
for (int i = 0; i < nB; ++i) {
results << B[i] << " "
<< E[i] / N << " "
<< C[i] / N << " "
<< M[i] / N << " "
<< M2[i] / N / N << " "
<< M4[i] / N / N / N / N << " "
<< BF[i] / N << " "
<< S[i] / N << " "
<< R[i] << " "
<< lnQ[i] << "\n";
}
results.close();
}
// multi-histogam reweighting (MHR) analysis
#ifdef MHR
// declaring arrays used in MHR analysis
double lnOmega[N+1];
double E_MHR[nB*MHR_Niter];
double C_MHR[nB*MHR_Niter];
double BF_MHR[nB*MHR_Niter];
bool relTerm[N+1];
CUDAErrChk( cudaMemcpy(ShistE,ShistEd,(N+1)*sizeof(int),cudaMemcpyDeviceToHost) );
for (int l = 0; l < MHR_Niter; ++l){
// calculate lnOmega
double Sigma[nB];
double mSigma;
for (int k = 0; k < N+1; ++k){
// maxima of -S = BF - B*E
Sigma[0] = BF[0]-B[0]*Ei[k];
mSigma = Sigma[0];
for (int i = 1; i < nB; ++i){
Sigma[i] = BF[i]-B[i]*Ei[k];
if (mSigma < Sigma[i]){
mSigma = Sigma[i];
}
}
double sD = 0;
for (int i = 0; i < nB; ++i){
sD += R[i]*exp(Sigma[i]-mSigma);
}
if ((ShistE[k] == 0) || (sD == 0)){
relTerm[k] = false;
lnOmega[k] = 0;
} else {
relTerm[k] = true;
lnOmega[k] = log(ShistE[k]) - mSigma - log(sD);
}
}
// reweigting of observables
double expOm[N+1];
double Om[N+1];
double mOm;
for (int i = 0; i < nB; ++i){
// determine the maxima of the reweighting exponent
mOm = lnOmega[0] - B[i]*Ei[0];
for (int k = 0; k < N+1; ++k){
Om[k] = lnOmega[k] - B[i]*Ei[k];
if (mOm < Om[k]){
mOm = Om[k];
}
}
// calculate reweighting exponentials
double p = 0;
for (int k = 0; k < N+1; ++k){
expOm[k] = exp(Om[k] - mOm);
if (relTerm[k])
p += expOm[k];
}
double s = 0;
for (int k = 0; k < N+1; ++k){
if (relTerm[k])
s += Ei[k]*expOm[k];
}
E_MHR[i+l*nB] = s / p / N;
BF_MHR[i+l*nB] = - mOm - log(p);
BF[i] = BF_MHR[i+l*nB];
s = 0;
for (int k = 0; k < N+1; ++k){
if (relTerm[k])
s += pow(Ei[k]-E_MHR[i+l*nB]*N,2)*expOm[k];
}
C_MHR[i+l*nB] = B[i]*B[i] * s / p / N;
}
}
// saving results
{
ofstream results;
char MHRDataFile[100];
char str2[100];
strcpy(MHRDataFile, dataDir);
sprintf(str2,"PA_MHR_results_run_%d.dat",r);
strcat(MHRDataFile,str2);
results.open(MHRDataFile);
results.precision(OutputPrecision);
for (int i = 0; i < nB; ++i){
results << B[i] << " ";
for (int l = 0; l < MHR_Niter; ++l){
results << E_MHR[i+l*nB] << " ";
results << C_MHR[i+l*nB] << " ";
results << BF_MHR[i+l*nB] / N << " ";
}
results << "\n";
}
results.close();
}
CUDAErrChk( cudaFree(ShistEd) );
#endif
}
CUDAErrChk( cudaFree(Averages) );
CUDAErrChk( cudaFree(Ridev) );
CUDAErrChk( cudaFree(Qd) );
CUDAErrChk( cudaFree(ioverlapd) );
CUDAErrChk( cudaUnbindTexture(boltzT) );
CUDAErrChk( cudaFree(boltztext));
CUDAErrChk( cudaDeviceSynchronize() );
CUDAErrChk( cudaEventRecord(stop, 0) );
CUDAErrChk( cudaEventSynchronize(stop) );
CUDAErrChk( cudaEventElapsedTime(&Etime, start, stop) );
cout << "Elapsed time: " << setprecision(8) << Etime/1000 << " s\n";
cout << "Time per spin-flip: " << setprecision(8) << Etime*1e6/EQsweeps/N/totPop << " ns\n";
CUDAErrChk( cudaEventDestroy(start) );
CUDAErrChk( cudaEventDestroy(stop) );
return 0;
}