forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_rotator.py
235 lines (215 loc) · 9.42 KB
/
pretrain_rotator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains training plan for the Rotator model (Pretraining in NIPS16)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
from tensorflow import app
import model_rotator as model
flags = tf.app.flags
slim = tf.contrib.slim
flags.DEFINE_string('inp_dir', '',
'Directory path containing the input data (tfrecords).')
flags.DEFINE_string(
'dataset_name', 'shapenet_chair',
'Dataset name that is to be used for training and evaluation.')
flags.DEFINE_integer('z_dim', 512, '')
flags.DEFINE_integer('a_dim', 3, '')
flags.DEFINE_integer('f_dim', 64, '')
flags.DEFINE_integer('fc_dim', 1024, '')
flags.DEFINE_integer('num_views', 24, 'Num of viewpoints in the input data.')
flags.DEFINE_integer('image_size', 64,
'Input images dimension (pixels) - width & height.')
flags.DEFINE_integer('step_size', 1, 'Steps to take for rotation in pretraining.')
flags.DEFINE_integer('batch_size', 32, 'Batch size for training.')
flags.DEFINE_string('encoder_name', 'ptn_encoder',
'Name of the encoder network being used.')
flags.DEFINE_string('decoder_name', 'ptn_im_decoder',
'Name of the decoder network being used.')
flags.DEFINE_string('rotator_name', 'ptn_rotator',
'Name of the rotator network being used.')
# Save options
flags.DEFINE_string('checkpoint_dir', '/tmp/ptn_train/',
'Directory path for saving trained models and other data.')
flags.DEFINE_string('model_name', 'deeprotator_pretrain',
'Name of the model used in naming the TF job. Must be different for each run.')
flags.DEFINE_string('init_model', None,
'Checkpoint path of the model to initialize with.')
flags.DEFINE_integer('save_every', 1000,
'Average period of steps after which we save a model.')
# Optimization
flags.DEFINE_float('image_weight', 10, 'Weighting factor for image loss.')
flags.DEFINE_float('mask_weight', 1, 'Weighting factor for mask loss.')
flags.DEFINE_float('learning_rate', 0.0001, 'Learning rate.')
flags.DEFINE_float('weight_decay', 0.001, 'Weight decay parameter while training.')
flags.DEFINE_float('clip_gradient_norm', 0, 'Gradient clim norm, leave 0 if no gradient clipping.')
flags.DEFINE_integer('max_number_of_steps', 320000, 'Maximum number of steps for training.')
# Summary
flags.DEFINE_integer('save_summaries_secs', 15, 'Seconds interval for dumping TF summaries.')
flags.DEFINE_integer('save_interval_secs', 60 * 5, 'Seconds interval to save models.')
# Distribution
flags.DEFINE_string('master', '', 'The address of the tensorflow master if running distributed.')
flags.DEFINE_bool('sync_replicas', False, 'Whether to sync gradients between replicas for optimizer.')
flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas (train tasks).')
flags.DEFINE_integer('backup_workers', 0, 'Number of backup workers.')
flags.DEFINE_integer('ps_tasks', 0, 'Number of ps tasks.')
flags.DEFINE_integer('task', 0,
'Task identifier flag to be set for each task running in distributed manner. Task number 0 '
'will be chosen as the chief.')
FLAGS = flags.FLAGS
def main(_):
train_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name, 'train')
save_image_dir = os.path.join(train_dir, 'images')
if not os.path.exists(train_dir):
os.makedirs(train_dir)
if not os.path.exists(save_image_dir):
os.makedirs(save_image_dir)
g = tf.Graph()
with g.as_default():
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
global_step = slim.get_or_create_global_step()
##########
## data ##
##########
train_data = model.get_inputs(
FLAGS.inp_dir,
FLAGS.dataset_name,
'train',
FLAGS.batch_size,
FLAGS.image_size,
is_training=True)
inputs = model.preprocess(train_data, FLAGS.step_size)
###########
## model ##
###########
model_fn = model.get_model_fn(FLAGS, is_training=True)
outputs = model_fn(inputs)
##########
## loss ##
##########
task_loss = model.get_loss(inputs, outputs, FLAGS)
regularization_loss = model.get_regularization_loss(
['encoder', 'rotator', 'decoder'], FLAGS)
loss = task_loss + regularization_loss
###############
## optimizer ##
###############
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
if FLAGS.sync_replicas:
optimizer = tf.train.SyncReplicasOptimizer(
optimizer,
replicas_to_aggregate=FLAGS.workers_replicas - FLAGS.backup_workers,
total_num_replicas=FLAGS.worker_replicas)
##############
## train_op ##
##############
train_op = model.get_train_op_for_scope(
loss, optimizer, ['encoder', 'rotator', 'decoder'], FLAGS)
###########
## saver ##
###########
saver = tf.train.Saver(max_to_keep=np.minimum(5,
FLAGS.worker_replicas + 1))
if FLAGS.task == 0:
val_data = model.get_inputs(
FLAGS.inp_dir,
FLAGS.dataset_name,
'val',
FLAGS.batch_size,
FLAGS.image_size,
is_training=False)
val_inputs = model.preprocess(val_data, FLAGS.step_size)
# Note: don't compute loss here
reused_model_fn = model.get_model_fn(
FLAGS, is_training=False, reuse=True)
val_outputs = reused_model_fn(val_inputs)
with tf.device(tf.DeviceSpec(device_type='CPU')):
if FLAGS.step_size == 1:
vis_input_images = val_inputs['images_0'] * 255.0
vis_output_images = val_inputs['images_1'] * 255.0
vis_pred_images = val_outputs['images_1'] * 255.0
vis_pred_masks = (val_outputs['masks_1'] * (-1) + 1) * 255.0
else:
rep_times = int(np.ceil(32.0 / float(FLAGS.step_size)))
vis_list_1 = []
vis_list_2 = []
vis_list_3 = []
vis_list_4 = []
for j in xrange(rep_times):
for k in xrange(FLAGS.step_size):
vis_input_image = val_inputs['images_0'][j],
vis_output_image = val_inputs['images_%d' % (k + 1)][j]
vis_pred_image = val_outputs['images_%d' % (k + 1)][j]
vis_pred_mask = val_outputs['masks_%d' % (k + 1)][j]
vis_list_1.append(tf.expand_dims(vis_input_image, 0))
vis_list_2.append(tf.expand_dims(vis_output_image, 0))
vis_list_3.append(tf.expand_dims(vis_pred_image, 0))
vis_list_4.append(tf.expand_dims(vis_pred_mask, 0))
vis_list_1 = tf.reshape(
tf.stack(vis_list_1), [
rep_times * FLAGS.step_size, FLAGS.image_size,
FLAGS.image_size, 3
])
vis_list_2 = tf.reshape(
tf.stack(vis_list_2), [
rep_times * FLAGS.step_size, FLAGS.image_size,
FLAGS.image_size, 3
])
vis_list_3 = tf.reshape(
tf.stack(vis_list_3), [
rep_times * FLAGS.step_size, FLAGS.image_size,
FLAGS.image_size, 3
])
vis_list_4 = tf.reshape(
tf.stack(vis_list_4), [
rep_times * FLAGS.step_size, FLAGS.image_size,
FLAGS.image_size, 1
])
vis_input_images = vis_list_1 * 255.0
vis_output_images = vis_list_2 * 255.0
vis_pred_images = vis_list_3 * 255.0
vis_pred_masks = (vis_list_4 * (-1) + 1) * 255.0
write_disk_op = model.write_disk_grid(
global_step=global_step,
summary_freq=FLAGS.save_every,
log_dir=save_image_dir,
input_images=vis_input_images,
output_images=vis_output_images,
pred_images=vis_pred_images,
pred_masks=vis_pred_masks)
with tf.control_dependencies([write_disk_op]):
train_op = tf.identity(train_op)
#############
## init_fn ##
#############
init_fn = model.get_init_fn(['encoder, ' 'rotator', 'decoder'], FLAGS)
##############
## training ##
##############
slim.learning.train(
train_op=train_op,
logdir=train_dir,
init_fn=init_fn,
master=FLAGS.master,
is_chief=(FLAGS.task == 0),
number_of_steps=FLAGS.max_number_of_steps,
saver=saver,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs)
if __name__ == '__main__':
app.run()