forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
178 lines (146 loc) · 6.09 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines the various loss functions in use by the PTN model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
def add_rotator_image_loss(inputs, outputs, step_size, weight_scale):
"""Computes the image loss of deep rotator model.
Args:
inputs: Input dictionary to the model containing keys
such as `images_k'.
outputs: Output dictionary returned by the model containing keys
such as `images_k'.
step_size: A scalar representing the number of recurrent
steps (number of repeated out-of-plane rotations)
in the deep rotator network (int).
weight_scale: A reweighting factor applied over the image loss (float).
Returns:
A `Tensor' scalar that returns averaged L2 loss
(divided by batch_size and step_size) between the
ground-truth images (RGB) and predicted images (tf.float32).
"""
batch_size = tf.shape(inputs['images_0'])[0]
image_loss = 0
for k in range(1, step_size + 1):
image_loss += tf.nn.l2_loss(
inputs['images_%d' % k] - outputs['images_%d' % k])
image_loss /= tf.to_float(step_size * batch_size)
slim.summaries.add_scalar_summary(
image_loss, 'image_loss', prefix='losses')
image_loss *= weight_scale
return image_loss
def add_rotator_mask_loss(inputs, outputs, step_size, weight_scale):
"""Computes the mask loss of deep rotator model.
Args:
inputs: Input dictionary to the model containing keys
such as `masks_k'.
outputs: Output dictionary returned by the model containing
keys such as `masks_k'.
step_size: A scalar representing the number of recurrent
steps (number of repeated out-of-plane rotations)
in the deep rotator network (int).
weight_scale: A reweighting factor applied over the mask loss (float).
Returns:
A `Tensor' that returns averaged L2 loss
(divided by batch_size and step_size) between the ground-truth masks
(object silhouettes) and predicted masks (tf.float32).
"""
batch_size = tf.shape(inputs['images_0'])[0]
mask_loss = 0
for k in range(1, step_size + 1):
mask_loss += tf.nn.l2_loss(
inputs['masks_%d' % k] - outputs['masks_%d' % k])
mask_loss /= tf.to_float(step_size * batch_size)
slim.summaries.add_scalar_summary(
mask_loss, 'mask_loss', prefix='losses')
mask_loss *= weight_scale
return mask_loss
def add_volume_proj_loss(inputs, outputs, num_views, weight_scale):
"""Computes the projection loss of voxel generation model.
Args:
inputs: Input dictionary to the model containing keys such as
`images_1'.
outputs: Output dictionary returned by the model containing keys
such as `masks_k' and ``projs_k'.
num_views: A integer scalar represents the total number of
viewpoints for each of the object (int).
weight_scale: A reweighting factor applied over the projection loss (float).
Returns:
A `Tensor' that returns the averaged L2 loss
(divided by batch_size and num_views) between the ground-truth
masks (object silhouettes) and predicted masks (tf.float32).
"""
batch_size = tf.shape(inputs['images_1'])[0]
proj_loss = 0
for k in range(num_views):
proj_loss += tf.nn.l2_loss(
outputs['masks_%d' % (k + 1)] - outputs['projs_%d' % (k + 1)])
proj_loss /= tf.to_float(num_views * batch_size)
slim.summaries.add_scalar_summary(
proj_loss, 'proj_loss', prefix='losses')
proj_loss *= weight_scale
return proj_loss
def add_volume_loss(inputs, outputs, num_views, weight_scale):
"""Computes the volume loss of voxel generation model.
Args:
inputs: Input dictionary to the model containing keys such as
`images_1' and `voxels'.
outputs: Output dictionary returned by the model containing keys
such as `voxels_k'.
num_views: A scalar representing the total number of
viewpoints for each object (int).
weight_scale: A reweighting factor applied over the volume
loss (tf.float32).
Returns:
A `Tensor' that returns the averaged L2 loss
(divided by batch_size and num_views) between the ground-truth
volumes and predicted volumes (tf.float32).
"""
batch_size = tf.shape(inputs['images_1'])[0]
vol_loss = 0
for k in range(num_views):
vol_loss += tf.nn.l2_loss(
inputs['voxels'] - outputs['voxels_%d' % (k + 1)])
vol_loss /= tf.to_float(num_views * batch_size)
slim.summaries.add_scalar_summary(
vol_loss, 'vol_loss', prefix='losses')
vol_loss *= weight_scale
return vol_loss
def regularization_loss(scopes, params):
"""Computes the weight decay as regularization during training.
Args:
scopes: A list of different components of the model such as
``encoder'', ``decoder'' and ``projector''.
params: Parameters of the model.
Returns:
Regularization loss (tf.float32).
"""
reg_loss = tf.zeros(dtype=tf.float32, shape=[])
if params.weight_decay > 0:
is_trainable = lambda x: x in tf.trainable_variables()
is_weights = lambda x: 'weights' in x.name
for scope in scopes:
scope_vars = filter(is_trainable,
tf.contrib.framework.get_model_variables(scope))
scope_vars = filter(is_weights, scope_vars)
if scope_vars:
reg_loss += tf.add_n([tf.nn.l2_loss(var) for var in scope_vars])
slim.summaries.add_scalar_summary(
reg_loss, 'reg_loss', prefix='losses')
reg_loss *= params.weight_decay
return reg_loss