
An AI-aided Solution to Open-angle 

Glaucoma Screening in Developing and 

Rural Countries 

 

Jiacheng Dang Secondary diploma, Yvonne Chan PHD ‘Iolani School 

Address: 563 Kamoku St. Honolulu, Hi, 96826 

Tel: 808-683-5982  

E-mail: jd2101@iolani.org 

 

Précis 

 This study developed a deep learning algorithm that detects open-angle glaucoma 

(AUC=0.994). It also discussed how it can be implemented with previous work to address 

glaucoma screening in developing countries. 

  



Purpose: The purpose of this study was to develop a feasible deep learning algorithm that 

diagnose open-angle glaucoma on digital fundus images 

 

Methods: 3870 digital fundus images (DFIs) from RIGA and OGIGA were used to train the 

object detection deep learning architecture You Only Look Once v3(YoloV3) to detect the area 

of Optic Disc (OD) from a DFI. 901 healthy and 761 glaucomatous optic discs from ACRIMA, 

RIM-ONE, Shoi86-HRF, and Drishti-GS were used to train the image classification 

architectures to detect glaucomatous change on the optic disc. Seven of the most popular deep 

learning architectures, 5 of the optimizers and 4 different learning rates were tested in various 

combinations to optimize the classification accuracy between healthy and glaucomatous optic 

discs. Multiple training strategies were applied to minimize the overfitting of the deep learning 

model. The area under the receiver operating characteristic curve (AUC) was calculated and 

compared other deep learning algorithms to evaluate the accuracy of discrimination for each 

algorithm.  

 

Results: In the test dataset, this deep learning system achieved an accuracy of 

97.9%(AUC=0.994), a sensitivity of 98.2% and specificity 97.6%, which was significantly 

larger than the AUCs of all the other deep learning models with different structures. A website 

interface was built to offer public access to the diagnostic algorithm. 

 

Conclusion: A deep learning system with a website interface that can detect glaucomatous 

changes with high sensitivity and specificity. 
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Introduction 

  

Research Background and Significance 

Glaucoma is the second leading cause of blindness in the world. By 2020, 80 million 

people are predicted to be living with glaucoma (Quigley, 2006). Open-angle glaucoma is the 

most common form of glaucoma. It is a chronic eye disease that leads to elevated eye pressure, 

optic atrophy, and visual field defect. The treatment for terminal open-angle glaucoma is 

limited, and the resulting blindness is irreversible. The visual loss and blindness caused by 

open-angle glaucoma can affect patients’ quality of life in multiple ways. Not only do the 

patients face difficulties living independently, but they also have roughly double the incidence 

of anxiety and depression (Skalicky, 2008). The prevention of the progression of open-angle 

glaucoma is possible; however, given proper treatment at its early stage. The most significant 

difficulty in its diagnosis is that open-angle glaucoma is asymptomatic at its early stage. 

Patients are often unaware of its existence until the severe visual loss has occurred. In China, 

approximately 90 percent of glaucoma patients are unaware of their diseases and thus receive 

no treatment. If an annual glaucoma test were deployed, this incidence could be cut in half 

(Ding, 2005). However, the current detection of early glaucoma is problematic. The current 

glaucoma examination process is time consuming, expensive, and based on a visual 



examination (Khouri, 2015). The considerable expense and the cumbersome process of the 

annual glaucoma exam prevent many people from taking the glaucoma exam. More 

importantly, glaucoma examination is barely accessible in developing countries. Due to the 

cost of retina scanning equipment and the required expertise for operating such equipment and 

making diagnosis, glaucoma examination is unaffordable or not offered in places with limited 

medical resources. Furthermore, such detection methods of visual examination are subjective 

and prone to errors. Hence, the purpose of the study is to develop an early-stage glaucoma 

diagnosis system that is accurate, user-friendly, and low-cost, enabling glaucoma tests to be 

conducted by people with minimal expertise to prevent the progression of glaucoma for those 

with limited access to screening. 

Diagnosis on Digital Fundus Images 

 Besides eye pressure measurement and other glaucoma examinations based on numerical 

measurements of patients, image analysis on Digital Fundus Images (DFIs) of patients are also 

widely applied in glaucoma diagnosis. DFIs are images of patients’ retina taken by widefield 

retinal imaging devices. DFIs are one of the major sources of reference during glaucoma 

examination by ophthalmologists. During the visual examination on DFI, various indicators 

can be used to diagnose glaucoma: Optic Disc dilation, vertical cup to disc ratio (Hancox OD, 

1999), the ISNT rule (disc rim of thickness of inferior ≥ superior ≥ nasal ≥ tempura) (Harizman, 

2006), and the occurrence of parapapillary atrophy (Jonas, 1992). However, detections based 

on these indicators are either difficult to be applied to computer-aid diagnosis or be proved to 

have no causation with glaucoma (Bailey, 2017) (James, 2017). One of the other detection 

methods is based on the Optic Disc (OD) assessment through ophthalmoscopy. Compared to 

other indicators, assessment on the Optic Disc is more applicable to deep learning. OD is the 

retina area where retinal ganglion cells form the optic nerve while exiting the eye, which 

transmits visual information from the retina to the brain. Optic atrophy, as one indicator of 

glaucoma, is the loss of some or most nerve fibers in the optic nerve, which changes the 

structure of the OD. Since a large number of healthy and glaucoma DFIs are accessible on 

public databases, analyzing DFIs is especially useful for training the glaucoma diagnosing 

program-- an system that determines whether any potential glaucoma features are present in a 

DFI. In this paper, open-angle glaucoma is diagnosed based on the classification of Optic Discs. 

 

Fig 1 Two digital fundus images with optic discs indicated in the yellow boxes. 

 

Deep Learning 



Deep learning is a class of machine learning algorithms that uses multiple layers consisting 

of multiple linear and non-linear transformation data to extract higher-level and abstract 

features progressively from the raw input (Bengio, 2013). Convolutional neural networks 

(CNNs) are a class of deep learning commonly applied to analyze and classify images by 

assigning importance (or weights and biases) to various features in the image. Eventually, 

CNNs can differentiate between these features automatically. Deep learning architectures 

contain multilayer neural networks, including different configurations of networks and training 

strategies that aim to optimize the outcome. With enough training, CNNs will be able to acquire 

a set of best-fit weights for each feature to reach optimal classification results via updating the 

weights of each feature based on the loss function (Ren, 2017). A CNN is composed of four 

significant parts: convolutional layers, activation functions such as Rectified Linear Unit 

(ReLU), pooling layers, and fully connected layers. This research proposed an innovative 

diagnostic system which combines object detection neural networks (Yolov3) and image 

classification neural networks (Vgg16) to optimize the diagnostic performance. This structure 

allows the system to bypass manual preprocessing of the datasets, which consequently 

eliminates the errors associated with such operations. Consequently, this structure allows the 

system to be trained on relatively larger datasets to achieve a more stable and reliable accuracy. 

Furthermore, to acquire the optimal performance, seven most outperforming deep learning 

architectures and five optimizers were compared with tuned hyperparameters. By utilizing 

seven pre-trained deep learning architectures, this research also tested the validity of pre-

trained ImageNet neural network models by fine-tuning the glaucoma datasets. All of the pre-

trained models significantly improve the performance of the model and primarily lowers the 

training time even being applied to a distinctive dataset. To offer public access to glaucoma 

testing, a website interface (www.glaucomark .com) was developed using the model introduced 

in this paper with an accuracy of 97.9% (AUC= 0.994). After uploading the optic disc image, 

the website interface will return the diagnostic result of glaucoma numerically under 30 

seconds of processing time.  

 

Methods 

  

 

Convolutional Neural Networks Layers 

The convolutional layers are the major structure of CNN, and they are accountable for the 

feature extraction. The convolutional layer utilizes a set of learnable filters with different 

parameters to perform operations on the original input image. Each of the filters will eventually 

produce a 2-dimensional activation map which will be stacked to form an output volume for 

further operation. Using a CNN allows the system to capture relevant features from an image 

at a relatively low computational cost because of weight sharing (CS231n, 2019). In this study, 

Vgg16 uses sixteen convolutional layers to emphasize the depth of the feature mapping. Since 

optic discs with and without glaucoma look relatively identical, a larger number of parameters 

from the deeper neural networks allows the deep learning model to capture the subtle 

differences during Optic Disc classification tasks. Activation functions numerically achieve the 

weighted sum of the input values and decide whether it should be kept. ReLU (Rectified Linear 



Unit) is one type of activation function that computes the function f(x)=max (0, x). ReLU is 

less computationally expensive than other activation functions since it involves fewer 

calculations. This leaves the data unchanged and makes it less susceptible to Vanishing 

Gradients. The simplicity of this function also solves the saturation problem as long as the input 

exceeds zero. ReLU activation functions were used after each convolutional layer in VGG16. 

SoftMax is another type of activation function that turns the output of a fully connected layer 

into probability that sums to one. It outputs a vector that indicates the potential output classes 

together with the probabilities associated with each (Sergey, 2015). In the proposed model, the 

SoftMax function was placed at the end of the deep learning model and output a numerical 

value from 0 to 1 corresponding to the likelihood of glaucoma on the input digital fundus image. 

Pooling layers in a CNN architecture are used for abstracting image features (CS231n, 2019). 

The common pooling layer (max-pooling and mean-pooling) employs a 2x2 size filter with a 

stride of 2, selecting 25% of the activations on an activation map from convolutional layers. 

Every max-pooling operation would select the most significant number from a 2x2 region. 

Pooling layer largely lowers the capacity of parameters, which reduces the computation in the 

network and controls overfitting, improving the overall performance of the network. A fully 

connected layer works as a means of mapping features with full connections to all activations 

from the previous layers (CS231n, 2019). Those activations will be calculated based on a 

weighted multiplication and biased addition in the next hidden layer and eventually get to the 

output layer. The usage of fully connected layers helps to select representative features for 

further classification.    

Binary Cross-Entropy Loss Function 

         In deep learning, the loss function is a method to evaluate how well the model output 

fits the actual results. The loss function will return a vast number of predictions based on the 

trained model deviating too much from actual results. In this paper, Binary Cross-Entropy Loss 

was used to evaluate the loss of this binary prediction model. It consists of a Sigmoid activation 

and a Cross-Entropy Loss. 

 

   Each of the C classes would process through a Sigmoid Activation function first and 

calculate a Loss based on the Cross-Entropy Loss function. The loss is summed up to indicate 

the loss of each epoch. 

Deep Learning Model 

A deep learning model consists of deep learning architecture and model parameters. 

Deep learning architectures determine the arrangement of different functional layers that apply 

weighted calculations to the input data. The model parameters determine the weight of each 

calculation. While training the deep learning model, the model adjusts its parameters by 

comparing its prediction on training datasets with the actual results until the model prediction 

is accurate on the testing dataset (not included in training). To optimize the deep learning model, 

a series of techniques were used. And the validation of the model, as well as the model 

application, was also completed in this research.  

Two-part Diagnostic System 



 In order to diagnose glaucoma from digital fundus images, two deep learning algorithms 

were used for two separated tasks. The first part of the system adopts the object detection 

network YoloV3 to detect the area of optic disc from the retina. Since the change of optic disc 

structure has been a major symptom of glaucoma, excluding the analysis on areas outside the 

optic disc will greatly improve the performance of the diagnostic system. An image 

classification network VGG16 was used in the second part, allowing the system to detect 

glaucoma features from the optic disc area.  

One unique difference of the proposed diagnostic system in this paper is that it utilizes a 

two-parts deep learning architecture, aiming to avoid the complex and error-prone manual pre-

processing of the input digital fundus images. Data augmentation was applied to enhance the 

capacity of datasets during training. The system proposed in this paper is constructed using 

TensorFlow Library in Python.  

 
Fig 2. A flowchart displaying the structure of the detection system 

To offer public and compatible open-angle glaucoma classification access, a website 

application was designed based on HTML, CSS, JavaScript, and Python with frameworks and 

packages such as React, TensorFlow, and Flask. The website has been deployed on GitHub 

pages with its Flask API being served on Alibaba Cloud Server. The website is now active at 

www.glaucomark.com. After the user uploads the photo of an optic nerve, the website will 

send the data to the cloud server and fetch back the diagnosing result in under 45 seconds. No 

data will be saved.  

You Only Look Once V3 (YoloV3) 

         YoloV3 is one of the state-of-art object detection networks. YoloV3 has extremely 

fast processing speed and a relatively smaller size compared to other object detection 

architectures. These features enable the deep learning model to be easily embedded into a 

website interface for public access, making fast diagnosis possible. In one evaluation, It 

predicts bounding boxes locations and class probabilities by one single neural network directly 

from full images. Based on the mAP measured on the COCO dataset, YoLoV3(mAP=51.5, 

time=22) achieved similar performance to Single Shot MultiBox Detector (mAP=50.4, 

time=125), but six times faster (Redmon, 2018). The loss function was the sum of the loss of 

four features of detection ((x, y), (w, h), class, and confidence). 



The Yolo loss function starts with the loss of localization, where (x, y) represents the of 

the bounding box coordinates, and (w, h) represents the width and height of the bounding box 

when there is an object: 

 
Then added with the loss of two prediction confidence including the bounding box with an 

object: 

 

And the prediction confidence of the bounding box without an object: 

 
Finally added with loss of the class probability when there is an object: 

 

Where 𝟙i
obj represents whether the detected object appears in the cell I and 𝟙ij

obj represent if the j 

th bounding box in the i th cell is responsible for the object (Redmon, 2018).  

  

Visual Geometry Group Neural Network (VggNet) 

VggNet is a CNN architecture emphasizing the aspect of depth to its performance by 

utilizing relatively more convolutional layers with significantly more parameters. Vgg16 was 

used in the diagnostic system due to its large numbers of parameters (10^7). Since the visual 

difference between healthy and glaucoma digital fundus images is insignificant, the depth of 

Vgg16 allows the model to capture the more subtle differences between a healthy retina and a 

retina with glaucoma. Using tiny (3x3) convolution filters in all layers, it steadily increases the 

depth of the network by constructing 11-19 convolutional layers, which significantly increases 

the accuracy of the network by allowing the networks to extract more representational and 

advanced features. Using multiple tiny (3x3) convolutional layers instead of one larger 

convolutional layer(7x7) makes the decision function more discriminative and reduces the 

number of parameters by 55% with the same Receptive Field (CS231n, 2019). In this paper, 

Vgg16 was compared with six other object classification CNN architectures and outperformed 



the other five. However, its limitation of a large number of parameters at the last three fully 

connected layers leads to severe overfitting due to the high similarity of the data. Such 

overfitting was solved using multiple 

techniques. 

 

Fig 3 Model structure of the modified Vgg16 used in this paper. 

 

Data Augmentation. 

Data augmentation was utilized in this system to enlarge the datasets. A larger dataset 

increases the diagnostic accuracy of the model in return for extra training time. During this 

process, original images were transformed into new images with different sizes, viewpoints, 

brightness, orientations, and translations. Due to the high similarity and symmetry of the fundus 

image datasets, such operation is exceptionally effective, augmenting the dataset by at least 

five times. 



 

 

Fig 4,5 Augmented Optic Disc image for image classifier and object detector training 

 

Sources of DFI Datasets  

DFIs for testing and training were obtained from RIGA (Almazroa, 2005) , OGIGA(NCBL, 

2015), ACRIMA(Diaz-Pinto, 2019), RIM-ONE(RIM-ONE, 2015), Shoi86-HRF (cvblab, 

2016), and Drishti-GS (Drishti-GS, 2016). The RIGA and the OGIGA databases contain 3870 

DFIs with optic discs labeled by ophthalmologists and were used to train the YoloV3. The 

ACRIMA, RIM-ONE, Shoi86-HRF, and Drishti-GS databases consist of 901 healthy and 761 

glaucoma optic discs for Vgg16 training. The composition of all the data is summarized in 

Table 1. 

Table 1 List of public glaucoma databases and number of images acquired. 

 
No. of images used to 

identify optic disc  

No. of images used to 

diagnose glaucoma 

 

Database OD-Labeled Normal Glaucoma Total 

Drishti-

GS 
 31 70 101 

SJ86-HRF  300 101 401 

RIM-ONE  261 194 455 

ACRIMA  309 396 705 

OGIGA 650   650 

SRIGA 3220   3220 

 3870 901 761 5532 



The Glaucoma/Normal Datasets (Column 2, 3) consist of optic disc images that is specified either glaucoma or healthy. The 

OD-Labeled Datasets (Column 4) consist of digital retina images labeled with the location of optic discs. 

 

Fig 6 Part of object classfication networks training data 

 

Fig 7 Part of objection detection networks training data 

 

 

Training Strategy to Avoid Overfit  

Overfit is one of the most common problems during model training. An overfitting deep 

learning model lacks the ability to give sensible outputs to sets of input that it has never seen 

before. In other words, overfitting occurs when a model has learned noise and/or 

unrepresentative features from the training datasets rather than representative features, in such 

a way that it may fail to fit new datasets. In this paper, multiple techniques had been deployed 

to reduce overfitting. 

Early Stopping is a training technique such that the model will be monitored by a 

function that stops training when the accuracy of the model does not increase for 40 continuous 

epochs (for each epoch, the model runs through all the training data). This process can prevent 

overfitting by stopping the model’s iteration before its iterative convergence to the training 

data. 

Data Augmentation improves the diagnostic ability of the model by increasing the 

sample size. The model’s ability to generalize is mostly dependent on the size and versatility 



of the datasets. By adopting data augmentation to the training datasets, the model will have a 

reduced chance of overfitting. 

Regularization was used to reduce the complexity of the model. The model’s 

complexity increases with more parameters. A complex model overfits more commonly. 

Regularization reduces the chance of overfitting by adding new information, which simplifies 

the model. 

Deep learning architectures were selected based on their size. The model’s learning 

capacity and complexity determine whether the model generalizes well. In this paper, most 

architectures were selected based on their number of parameters (fewer than 3e7) to reduce 

overfitting. 

Results 

Model Comparison 

In this paper, the Vgg16, Vgg19, ResNet50V2, DenseNet121, Xception, 

InceptionResnetV2, and Inception architectures were applied the same glaucoma diagnosis 

task using their pre-trained ImageNet weights available in the Keras core. They were trained 

on 1.28 million images from the ImageNet database and acquired outstanding accuracy. These 

pre-trained models were beneficial for the system to extract features from Digital Fundus 

Images (DFIs). These architectures were modified to fit the datasets such that their last fully 

connected layers were changed to a global average pooling layer (GlobalAveragePooling2D) 

followed by a Dense layer with ReLU activation, a dropout layer of rate 0.5, a two-node fully 

connected layer representing two classes (glaucoma and healthy) and a sigmoid classifier. 

These modified pre-trained models were trained on 1329 training and 332 testing DFIs with 

learning rates (lr) of 1e-4 and 1e-5. They were trained for 150 epochs, each on a device using 

GPU RTX-2080Ti 11GB in Ubuntu-16.11. Table 2 presents the validation accuracy of each 

model on both learning rates. Figures 8-13 show how the models’ accuracies changed during 

training. 

Table 2 Performance of Architectures on Learning Rates 1e-4 and 1e-5. 

   Architecture Depth Parameters Optimizer Accuracy(lr=1e-4) Accuracy(lr=1e-5) 

VGG16 23 1.38e8 Adam 0.963 0.979 

VGG19 26 1.43e8 Adam 0.967 0.974 

ResNet50V2 50 2.6e7 Adam 0.956 0.906 

DenseNet121 121 8e6 Adam 0.909 0.922 

Xception 126 2.3e7 Adam 0.944 0.963 

InceptionResNet 572 5.6e7 Adam 0.932 0.935 

InceptionV3 159 2.4e7 Adam 0.947 0.919 



Fig 8. Model Accuracy of Vgg16 and Vgg19 (lr=1e-4).  Fig 9. Model Accuracy of ResNet50 and DenseNet 121 (lr=1e-4) 

 

Fig 10. Accuracy of Xception, Inception, and InceptionResNet (lr=1e-4) Fig 11. Accuracy of Vgg16 and Vgg19 (lr=1e-5) 

 
Fig 12. Accuracy of Xception, Inception, and InceptionResNet (lr=1e-5) Fig 13. Accuracy of ResNet50 and DenseNet 

121(lr=1e-5) 

 

Optimizer Comparison 

The error in predictions made by the model after each iteration is measured using a loss 

function. During the training process, parameters of the model are tweaked to minimize the 

loss function for optimal performance. Optimizers play the role of improving the model 



according to the loss function. In this paper, the five most popular optimizers were deployed 

on the same VGG16 model on 1329 training and 332 testing DFIs with a learning rate of 1e-5. 

Results showed that Adam optimizer outperformed other optimizers. Details are shown in 

Table 3. The Adam optimizer with binary cross-entropy loss function and a learning rate of 1e-

5 acquires the accuracy of 0.979. Figure 18 presents the model’s performance with different 

optimizers over 150 epochs. 

Table 3 Performance of Optimizers on Vgg16 

Optimizer Loss Function Momentum Learning Rate Accuracy 

Adadelta binary cross-entropy N/A 1e-5 0.759 

SGD binary cross-entropy 0.9 1e-5 0.817 

RMSprop binary cross-entropy 0.9 1e-5 0.929 

Adam binary cross-entropy N/A 1e-5 0.979 

Adagrad binary cross-entropy N/A 1e-5 0.895 

  

Fig 14. Validation accuracy of the model, using different optimizers. 

 

Hyperparameter Tuning 



 For optimal performance, multiple learning rates were tested. The learning rate is a crucial 

hyperparameter in CNN model training that controls the amount of change to improve the 

model after each update according to the estimated error. A huge learning rate will lead to a 

quick convergence to a suboptimal solution, whereas a minimal learning rate can significantly 

slow down the training process. The system is trained with a learning rate of 1e-3,1e-4,1e-5 

and 1e-6. The highest performance is obtained with a learning rate of 1e-5. The system 

achieved an accuracy of 97.9%, as shown in Table 2. To generalize the experiments and result, 

the training was repeated 150 times (150 epochs) until the system's accuracy was stable.  

Table 4 Performance of the proposed system  

Learning rate Accuracy (%) 

1e-3 70.1 

1e-4 76.7 

1e-5 97.9 

1e-6 97.1 

 

Fig 15. Validation accuracy of the model, using different learning rates. 

 

Model Evaluation 

 To numerically measure the diagnostic performance of the deep learning model, the 

Receiver Operating Characteristic (ROC) curves and the area under ROC curve (AUC) were 

reported. Moreover, multiple evaluating criteria and a confusion matrix were employed to 

measure the performance of the model. A ROC curve is a graph that presents the diagnostic 



ability of a binary classifying model with varying discrimination threshold. The ROC curve is 

created by plotting the true positive rate against the false positive rate. AUC (area under the 

ROC curve) denotes the measure of separability: capability of distinguishing between classes.  

Confusion Matrix 

n=332 

Predicted: 

Positive 

Predicted: 

Negative 

 

Actual: 

Positive 

TP=162 FN=4 166 

Actual: 

Negative 

FP=3 TN=163 166 

 

165 167  

where true positive (TP) denotes the image has glaucoma and the prediction is positive, false 

positive (FP) denotes the image does not have glaucoma, but the prediction is positive, false 

negative (FN) denotes the image has glaucoma, but the prediction is negative, and true negative 

(TN) denotes the image does not have glaucoma and the prediction is negative. 

  



Fig 16. Measurements based on confusion matrix. 

A ROC curve is a graph that presents the diagnostic ability of a binary classifying model 

with varying discrimination threshold. The ROC curve is created by plotting the true positive 

rate against the false positive rate. AUC (area under the ROC curve) denotes the measure of 

separability: capability of distinguishing between classes.  

 

Fig 17. ROC curve of the proposed model with AUC=0.994 

 

User Interface Demonstration 

 To offer public and compatible open-angle glaucoma classification access, a website 

application was designed based on HTML, CSS, JavaScript, and Python with frameworks and 

packages such as React, TensorFlow, and Flask. The website has been deployed on GitHub 

pages with its Flask API being served on Alibaba Cloud Server. The website is now active at 

www.glaucomark.com. 

Given this classification website, patients can receive personal ophthalmic care through any 

network-connected technology. The process takes 45 seconds based on the device and no data 

will be saved. 



 

Fig 17, 18 The uploading page and result page of the web interface 

 

Discussion 

Model Training 

The training process was suggested that the combination of object detection and image 

classification neural networks largely reduces the excessive computation of the detection, 

boosting the training speed and the diagnostic accuracy. In this study, the effectiveness of using 

two DL architectures in combination was investigated. The input image was preprocessed using 

an object detection network, following an image classification network to classify images based 

on the area of interest (optic disc). The powerful discrimination observed with the proposed 

method also reinforces the claim that glaucoma could be diagnosed by graphically analyzing 

the optic discs area on the retina.  

Compared to other developed several recognition methods on automatic open-angle 

glaucoma detection, the AUC obtained in the current study - with the combined deep learning 

classifier - suggests far better discriminating and processing speed may be possible. Singh et 

al. proposed an innovative technique using features from segmented optic discs (with blood 

vessels removed) using 44 DFI and achieved an accuracy of 94.7% [8]. Chen et al. utilized a 

six-layer CNN based deep learning architecture and data augmentation and achieved accuracies 

of 83.1% and 88.7% on two different datasets [9]. Chakrabarty et al. used a newly proposed 

feature extraction technique, which reported an accuracy of 79.2% based on datasets of 2252 

DFIs [10]. 

Vgg16 and Vgg19 approached relatively better performance than other architectures in 

this study. This could be explained by their significantly higher number of parameters. With 

more parameters, CNN will be able to capture more subtle information of the input image. 

Generally, training datasets with larger capacity would produce better performance during 



CNN training. In this work, 3870 fundus images labeled with optic disc area were used to train 

the object detection model and 1662 fundus images were used to develop the object 

classification model which consists of sixteen layers. Although all of the seven deep learning 

architectures acquire similar classifying performance on ImageNet dataset, they acquired 

different performance specifically on the glaucoma datasets. Since the image of a healthy and 

glaucoma optic disc is hardly distinguishable by people without expertise, CNN structures with 

more parameters will outperform other CNN structures on capturing those subtle differences. 

In other words, DL architecture with more parameters performs well on classification between 

images with subtle differences. However, the extra amount of computation from the increased 

parameter size should also be considered. 

Retina Imaging Device 

To find a retina imaging method to incorporate with this glaucoma diagnosing system, 

a Raspberry Pi Based camera is being built based on the research of Shen et al (Shen, 2017). 

This camera utilizes both infrared and white lighting sources to locate and capture the photos 

through the naturally dilated pupils in a dark environment. This camera is pocket-sized, non-

mydriatic, and inexpensive, costing about $1000 less than the typical retina imaging devices. 

The major advantage of the camera is that it’s non-mydriatic, meaning it does not require pupil 

dilation before using. Dilating drops are inconvenient to use on oneself and can be dangerous 

in the much less common glaucoma patient that has narrow angles (shallow anterior chamber) 

* and dilation can cause a total blockage of the trabecular meshwork, the aqueous drainage 

system. This uncommon situation causes angle-closure glaucoma which leads to permanent 

loss of vision. Thus, by excluding the process of dilation, this camera can be operated safely 

by people without expertise (Shen et al ,2018). 

 
Fig 18 Demo of the Retina Camera: The raspberry-pi based camera(left) is able to take retina 

images without pupil dilation in dark where pupil naturally dilates. The image on the right 

shows the image captures under infrared lighting and white lighting. This design allows people 

with minimal expertise to operate the camera (Shen, 2018). 

 

Application 

 Open-angle glaucoma is easy to treat but asymptomatic at its early stage. In China, 90 

percent of patients with this disease are unaware of it and thus receive no treatment. Although 

the annual examination of open-angle glaucoma can prevent blindness, the costly and time-

consuming natures of glaucoma screening undermine people’s initiative and spontaneity of 

taking the examination annually, which consequently prevents glaucoma detection. Other than 



that, in developing countries, ophthalmologists are hardly accessible, and most of the blind 

people there are blind from entirely preventable diseases, one of which is glaucoma.  

In this study, a new glaucoma screening method was proposed by combining the 

diagnosing website with the low-cost and portable retina image camera. The proposed solution 

has the potential to implement large-scale glaucoma screening in developing countries. With a 

shallow learning curve, the camera enables volunteers without expertise to take a retina image 

of patients. The glaucoma examination can then be performed simply by uploading the retina 

image to the Glaucomark website.  

The usage of these two technologies could enlarge the volunteers of only 

ophthalmologists to people who generally care about vision care. Doctors and nurses at local 

clinics in developing/rural counties could also be trained to use this camera and the website. 

With a large-scale glaucoma screening and the retina scans taken, ophthalmologists will be 

able to perform telemedicine to prevent the progression of glaucoma from leading towards 

blindness.  

 In the future, we intend to add a semantic segmentation network to determine the 

progression of glaucoma at different stages to facilitate glaucoma treatment. Furthermore. the 

model will be retrained on a dataset covering people of different ages, genders, and nationalities 

to ensure the reliability of the diagnosis. 

Conclusion 

 Glaucoma is the second leading cause of blindness in the world, mostly in developing 

countries with limited access to vision care. The difficulty of open-angle glaucoma is 

centralized on early detection since open-angle glaucoma is asymptomatic until blindness but 

treatable at its early stage. Although the method of annual glaucoma examinations can 

effectively prevent its progression, this method is relatively unapproachable due to the lack of 

medical resources in developing/rural countries. This research developed a highly accurate and 

fast deep learning model to detect glaucoma with 97.9% accuracy. A website interface is 

developed to offer public glaucoma examination service that requires no expertise for use. A 

raspberry-pi based camera was built based on the research of Shen et al to take retina images 

as the input of the Glaucomark website. An AI-aided solution was also proposed to facilitate 

the glaucoma screening process in developing/rural countries. 
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