-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtools.py
128 lines (103 loc) · 4.69 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from torch.cuda.amp import autocast, GradScaler
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import pandas as pd
from core.registry import Registry
from core.metrics import AverageMeter, MetricReport
from sklearn.metrics import accuracy_score
from core.data_manipulater import mixup_data, mixup_criterion
from core.checkpoint import save_checkpoint
def test_model(_print, cfg, model, test_loader, tta=False):
model.eval()
tbar = tqdm(test_loader)
np_outputs = []
with torch.no_grad():
for i, image in enumerate(tbar):
image = image.cuda()
with autocast(enabled=cfg.SYSTEM.FP16):
outputs = model(image)
output = outputs[0]
# _, top_1 = torch.topk(output, 1)
# y_preds.append(top_1.squeeze(1).cpu().numpy())
np_output = output.argmax(1).cpu().data.numpy()
np_outputs.append(np_output)
print(np_outputs[0].shape)
np_outputs = np.concatenate(np_outputs, 0)
print(np_outputs.shape)
# np.save(os.path.join(cfg.DIRS.OUTPUTS, f"test_{cfg.EXP}.npy"), y_preds)
# return y_preds
def valid_model(_print, cfg, model, valid_loader, valid_criterion, tta=False):
losses = AverageMeter()
top1 = AverageMeter()
model.eval()
tbar = tqdm(valid_loader)
np_outputs, np_targets = [], []
with torch.no_grad():
for i, (image, target) in enumerate(tbar):
image = image.cuda()
target = target.cuda()
with autocast(enabled=cfg.SYSTEM.FP16):
outputs = model(image)
output = outputs[0]
loss = valid_criterion(output, target)
np_target = target.cpu().data.numpy()
np_output = output.argmax(1).cpu().data.numpy()
np_outputs.append(np_output)
np_targets.append(np_target)
losses.update(loss.item(), image.size(0))
top1.update(accuracy_score(np_target, np_output) * 100.0, image.size(0))
np_outputs = np.hstack(np_outputs)
np_targets = np.hstack(np_targets)
metric = accuracy_score(np_outputs, np_targets)
_print("Valid acc: %.3f, top1: %.3f, loss: %.3f" % (metric*100.0, top1.avg, losses.avg))
return metric
def train_loop(_print, cfg, model, train_loader, criterion, valid_loader, valid_criterion, optimizer, scheduler, start_epoch, best_metric):
for epoch in range(start_epoch, cfg.TRAIN.EPOCHS):
_print(f"Epoch {epoch + 1}")
losses = AverageMeter()
top1 = AverageMeter()
model.train()
tbar = tqdm(train_loader)
scaler = GradScaler(enabled=cfg.SYSTEM.FP16)
for i, (image, target) in enumerate(tbar):
image = image.cuda()
target = target.cuda()
# calculate loss
if np.random.uniform() < cfg.DATA.MIXUP_PROB:
mixed_x, y_a, y_b, lam = mixup_data(image, target)
with autocast(enabled=cfg.SYSTEM.FP16):
outputs = model(mixed_x)
output = outputs[0]
loss = mixup_criterion(criterion, output, y_a, y_b, lam)
loss = loss / cfg.OPT.GD_STEPS
else:
with autocast(enabled=cfg.SYSTEM.FP16):
outputs = model(image)
output = outputs[0]
loss = criterion(output, target)
loss = loss / cfg.OPT.GD_STEPS
np_target = target.cpu().data.numpy()
np_output = output.argmax(1).cpu().data.numpy()
scaler.scale(loss).backward()
if (i + 1) % cfg.OPT.GD_STEPS == 0:
scaler.step(optimizer)
scheduler.step()
scaler.update()
optimizer.zero_grad()
# record loss
losses.update(loss.item() * cfg.OPT.GD_STEPS, image.size(0))
top1.update(accuracy_score(np_target, np_output) * 100.0, image.size(0))
tbar.set_description("Train top1: %.3f, loss: %.3f, learning rate: %.6f" % (top1.avg, losses.avg, optimizer.param_groups[-1]['lr']))
_print("Train top1: %.3f, loss: %.3f, learning rate: %.6f" % (top1.avg, losses.avg, optimizer.param_groups[-1]['lr']))
eval_metric = valid_model(_print, cfg, model, valid_loader, valid_criterion)
is_best = eval_metric > best_metric
best_metric = max(eval_metric, best_metric)
save_checkpoint({
"epoch": epoch + 1,
"arch": cfg.EXP,
"state_dict": model.state_dict(),
"best_metric": best_metric,
"optimizer": optimizer.state_dict(),
}, is_best, root=cfg.DIRS.WEIGHTS, filename=f"{cfg.EXP}.pth")