diff --git a/predicators/envs/sticky_table.py b/predicators/envs/sticky_table.py index d5ed4d6a96..f68ddaadb9 100644 --- a/predicators/envs/sticky_table.py +++ b/predicators/envs/sticky_table.py @@ -379,7 +379,7 @@ def _get_tasks(self, num: int, "sticky": sticky } tables = sorted(state_dict) - # rng.shuffle(tables) # type: ignore + rng.shuffle(tables) # type: ignore target_table = tables[-1] cube_table, cup_table = tables[:2] # Create cube. diff --git a/scripts/plotting/create_active_sampler_learning_plots.py b/scripts/plotting/create_active_sampler_learning_plots.py index d490f523e2..e8a871a43f 100644 --- a/scripts/plotting/create_active_sampler_learning_plots.py +++ b/scripts/plotting/create_active_sampler_learning_plots.py @@ -126,8 +126,8 @@ def _derive_per_task_average(metric: str, lambda v: "sticky_table-success_rate_explore" in v)), ("Task-Relevant", "purple", lambda df: df["EXPERIMENT_ID"].apply( lambda v: "sticky_table-random_score_explore" in v)), - ("Random Skills", "blue", lambda df: df["EXPERIMENT_ID"].apply( - lambda v: "sticky_table-random_nsrts_explore" in v)), + # ("Random Skills", "blue", lambda df: df["EXPERIMENT_ID"].apply( + # lambda v: "sticky_table-random_nsrts_explore" in v)), # ("Maple Q", "gray", lambda df: df["EXPERIMENT_ID"].apply( # lambda v: "sticky_table-maple_q" in v)), ],