-
Notifications
You must be signed in to change notification settings - Fork 23
/
main.py
284 lines (238 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import argparse
import os
import shutil
import time
import copy
import PIL.Image as Image
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from datasets import get_loader
from losses import get_loss
from models import get_model
from utils import get_scheduler, get_optimizer, accuracy, save_checkpoint, AverageMeter
parser = argparse.ArgumentParser(description='Self-Adaptive Trainingn')
# network
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet34',
help='model architecture')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--base-width', default=64, type=int,
help='base width of resnets or hidden dim of fc nets')
# training setting
parser.add_argument('--data-root', help='The directory of data',
default='~/datasets/CIFAR10', type=str)
parser.add_argument('--dataset', help='dataset used to training',
default='cifar10', type=str)
parser.add_argument('--train-sets', help='subsets (train/trainval) that used to training',
default='train', type=str)
parser.add_argument('--val-sets', type=str, nargs='+', default=['noisy_val'],
help='subsets (clean_train/noisy_train/clean_val/noisy_val) that used to validation')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--optimizer', default='sgd', type=str,
help='optimizer for training')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr-schedule', default='step', type=str,
help='LR decay schedule')
parser.add_argument('--lr-milestones', type=int, nargs='+', default=[40, 80],
help='LR decay milestones for step schedule.')
parser.add_argument('--lr-gamma', default=0.1, type=float,
help='LR decay gamma')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
# noisy setting
parser.add_argument('--noise-rate', default=0., type=float,
help='Label noise rate')
parser.add_argument('--noise-type', default=None, type=str,
help='Noise type, could be one of (corrupted_label, Gaussian, random_pixels, shuffled_pixels)')
parser.add_argument('--noise-info', default=None, type=str,
help='directory of pre-configured noise pattern.')
parser.add_argument('--use-refined-label', action='store_true', help='whether or not use refined label by self-adaptive training')
parser.add_argument('--turn-off-aug', action='store_true', help='whether or not use data augmentation')
# loss function
parser.add_argument('--loss', default='ce', help='loss function')
parser.add_argument('--sat-alpha', default=0.9, type=float,
help='momentum term of self-adaptive training')
parser.add_argument('--sat-es', default=0, type=int,
help='start epoch of self-adaptive training (default 0)')
# misc
parser.add_argument('-s', '--seed', default=None, type=int,
help='number of data loading workers (default: None)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--save-dir', dest='save_dir',
help='The directory used to save the trained models',
default='save_temp', type=str)
parser.add_argument('--save-freq', default=0, type=int,
help='print frequency (default: 0, i.e., only best and latest checkpoints are saved)')
args = parser.parse_args()
best_prec1 = 0
if args.seed is None:
import random
args.seed = random.randint(1, 10000)
def main():
## dynamically adjust hyper-parameters for ResNets according to base_width
if args.base_width != 64 and 'sat' in args.loss:
factor = 64. / args.base_width
args.sat_alpha = args.sat_alpha**(1. / factor)
args.sat_es = int(args.sat_es * factor)
print("Adaptive parameters adjustment: alpha = {:.3f}, Es = {:d}".format(args.sat_alpha, args.sat_es))
print(args)
global best_prec1
# Check the save_dir exists or not
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# prepare dataset
train_loader, val_loaders, test_loader, num_classes, targets = get_loader(args)
model = get_model(args, num_classes, base_width=args.base_width)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.cuda()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
criterion = get_loss(args, labels=targets, num_classes=num_classes)
optimizer = get_optimizer(model, args)
scheduler = get_scheduler(optimizer, args)
if args.evaluate:
validate(test_loader, model)
return
print("*" * 40)
for epoch in range(args.start_epoch, args.epochs):
scheduler.step(epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
print("*" * 40)
# evaluate on validation sets
prec1 = 0
for name, val_loader in zip(args.val_sets, val_loaders):
print(name +":", end="\t")
prec1 = validate(val_loader, model)
print("*" * 40)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if args.save_freq > 0 and (epoch + 1) % args.save_freq == 0:
filename = 'checkpoint_{}.tar'.format(epoch + 1)
else:
filename = None
save_checkpoint(args.save_dir, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best, filename=filename)
# evaludate latest checkpoint
print("Test acc of latest checkpoint:", end='\t')
validate(test_loader, model)
print("*" * 40)
# evaluate best checkpoint
if len(val_loaders) > 0:
checkpoint = torch.load(os.path.join(args.save_dir, 'checkpoint_best.tar'))
print("Best validation acc ({}th epoch): {}".format(checkpoint['epoch'], best_prec1))
model.load_state_dict(checkpoint['state_dict'])
print("Test acc of best checkpoint:", end='\t')
validate(test_loader, model)
print("*" * 40)
# save soft label
if hasattr(criterion, 'soft_labels'):
out_fname = os.path.join(args.save_dir, 'updated_soft_labels.npy')
np.save(out_fname, criterion.soft_labels.cpu().numpy())
print("Updated soft labels is saved to {}".format(out_fname))
def train(train_loader, model, criterion, optimizer, epoch):
"""
Run one train epoch
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, index) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target, index, epoch)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % args.print_freq == 0 or (i + 1) == len(train_loader):
lr = optimizer.param_groups[0]['lr']
print('Epoch: [{0}][{1}/{2}]\t'
'LR {lr:.6f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i+1, len(train_loader), lr=lr, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
def validate(val_loader, model):
"""
Run evaluation
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, _) in enumerate(val_loader):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
with torch.no_grad():
output = model(input)
loss = F.cross_entropy(output, target)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
if __name__ == '__main__':
main()