-
Notifications
You must be signed in to change notification settings - Fork 4
/
params_eval.yml
65 lines (54 loc) · 2.22 KB
/
params_eval.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
output_path: "./logs/output_${SLURM_JOB_ID}_${NOW}"
evaluation_path: "./evaluation/results"
evaluations: 8 # for multiple evaluations with majority vote and for LIDC number of samples
evaluation_vote_strategy: "confidence" # One of ["majority", "confidence"]
dataset_file: datasets.lidc
dataset_split: 'val' # One of ['val', 'test']
dataset_val_max_size: null # One of "null" (=full val size), or any number
class_weights: "uniform" # One of ["uniform", "weighted"]
save_qualitative_results:
enable: yes
num_images: 3 # will be doubled for random imgs
num_predictions: 3
dataset_pipeline_train: ["flip", "resize", "colorjitter", "torchvision_normalise"]
dataset_pipeline_train_settings:
target_size: [128, 256]
dataset_pipeline_val: ["resize", "torchvision_normalise"]
dataset_pipeline_val_settings:
target_size: [128, 256]
return_original_labels: yes
evaluation:
resolution: "original"
evaluations: 1 # for multiple evaluations with majority vote
evaluation_vote_strategy: "confidence" # One of ["majority", "confidence"]
multigpu: no
distributed: no
mp_loaders: 0
batch_size: 2
max_epochs: 7500
wandb: no
polyak_alpha: 0.999
beta_schedule: "cosine" # One of ["cosine", "linear"]
beta_schedule_params:
s: 0.008
time_steps: 250
backbone: "unet_openai" # One of ["unetplus", "unet_openai", "resnet50", "resnet101"]
feature_cond_encoder:
type: 'none' # ['dino', 'none']
model: 'dino_vits8' # 'dino_vitb8
channels: 384 # 768 for vitb, 384 for vits
conditioning: "concat_pixels_concat_features"
output_stride: 8 # at what output_stride in the unet to plug features
scale: 'single'
train: no
source_layer: 11 # layer 11 is always the last layer of any dino vit model
target_layer: 10 # at what output_stride in the unet to plug features
unet_openai:
base_channels: 32
channel_mult: null # 9M: [1, 2, 2, 4, 5]
attention_resolutions: [32, 16, 8]
num_heads: 1 # Ignored if num_head_channels is not -1
num_head_channels: 32 # If not -1, num_heads is automatically set to channels//num_head_channels
softmax_output: yes # this is the default for build_model
ce_head: no # adds an extra head that predicts logits (distinct from denoising head)
load_from: null