forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_full_flow.py
48 lines (39 loc) · 1.37 KB
/
basic_full_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import pytest
import keras
from keras.src import layers
from keras.src import losses
from keras.src import metrics
from keras.src import optimizers
from keras.src import testing
class MyModel(keras.Model):
def __init__(self, hidden_dim, output_dim, **kwargs):
super().__init__(**kwargs)
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.dense1 = layers.Dense(hidden_dim, activation="relu")
self.dense2 = layers.Dense(hidden_dim, activation="relu")
self.dense3 = layers.Dense(output_dim)
def call(self, x):
x = self.dense1(x)
x = self.dense2(x)
return self.dense3(x)
@pytest.mark.requires_trainable_backend
class BasicFlowTest(testing.TestCase):
def test_basic_fit(self):
model = MyModel(hidden_dim=2, output_dim=1)
x = np.random.random((128, 4))
y = np.random.random((128, 4))
batch_size = 32
epochs = 3
model.compile(
optimizer=optimizers.SGD(learning_rate=0.001),
loss=losses.MeanSquaredError(),
metrics=[metrics.MeanSquaredError()],
)
output_before_fit = model(x)
model.fit(
x, y, batch_size=batch_size, epochs=epochs, validation_split=0.2
)
output_after_fit = model(x)
self.assertNotAllClose(output_before_fit, output_after_fit)