-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata_preprocessing.py
344 lines (253 loc) · 13.1 KB
/
data_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 31 17:23:32 2015
@author: Brian Donovan ([email protected])
"""
from numpy import ravel, where, matrix, square, sqrt, cov, real, transpose, sum
from numpy import column_stack, zeros
from numpy.random import rand as rand_array
from numpy.linalg import inv, eigh, qr
import numpy as np
from functools import partial
from tools import DefaultPool
from sys import stdout
# Deletes dimensions from a data matrix that have too much missing data.
# Params:
# data_matrix - a Numpy matrix that contains the data - the columns of this
# matrix are individual observations, and the rows are variables (i.e. dimensions)
# perc_missing_allowed - a value between 0 and 1 that tells what fraction of
# missing data is allowed in a given dimension.
# Returns:
# a smaller matrix
def remove_bad_dimensions(data_matrix, perc_missing_allowed=.01):
n_vars, n_obs = data_matrix.shape
print("Full data matrix before cutting: %d x %d" % (n_vars, n_obs))
# Compute the percentage of missing data in each dimension
# We want to exclude observations where ALL dimensions are missing
# while computing this percentage
num_all_missing = ((data_matrix==0).sum(axis=0)==n_vars).sum(axis=1)
print("Num observations where ALL data is missing: %d " % num_all_missing)
num_missing = ((data_matrix==0).sum(axis=1) - num_all_missing)
perc_missing = num_missing.astype(float) / (n_obs - num_all_missing)
# Select only dimensions that have a low enough percentage
good_dims = ravel(perc_missing < perc_missing_allowed)
# Return the matrix that has rows corresponding to good dimensions
smaller_data_matrix = data_matrix[good_dims,:]
n_vars, n_obs = smaller_data_matrix.shape
print("Full data matrix after cutting: %d x %d" % (n_vars, n_obs))
stdout.flush()
return smaller_data_matrix, good_dims
# A wrapper for remove_bad_dimensions which works on groups of vectors, but removes
# the SAME dimensions from all of them.
# Params:
# vectors_grouped - a dictionary which maps some group->id to a list of Numpy
# column vectors
# perc_missing_allowed - a value between 0 and 1 that tells what fraction of
# missing data is allowed in a given dimension.
# Returns:
# new_vectors_grouped - a dictionary which has the same structure as vectors_grouped
# but the vectors are smaller
def remove_bad_dimensions_grouped(vectors_grouped, trip_names, perc_missing_allowed=.01):
# First, concatenate all pace vectors into one big data matrix (in a reasonable order)
sorted_keys = sorted(vectors_grouped)
all_vects = [vect for key in sorted_keys for vect in vectors_grouped[key]]
big_matrix = column_stack(all_vects)
# Now, remove dimensions that have missing data from the big matrix
new_big_matrix, good_dims = remove_bad_dimensions(big_matrix, perc_missing_allowed)
# Finally, reconstruct a dictionary which has the same structure as vectors_grouped,
# but uses the columns of new_big_matrix instead of big_matrix. We have to be
# careful to take the vectors out in the same order that we put them in
new_vectors_grouped = {}
i = 0
for key in sorted_keys:
group_size = len(vectors_grouped[key])
start=i
end=i+group_size
new_vectors_grouped[key] = [new_big_matrix[:,j] for j in xrange(start, end)]
i = end
if(trip_names!=None):
new_trip_names = [trip_names[j] for j in range(len(good_dims)) if good_dims[j]]
else:
new_trip_names = ['missing' for j in range(len(good_dims)) if good_dims[j]]
return new_vectors_grouped, new_trip_names
# Replaces missing observations with their average values. More specifically,
# if observation i has a missing value in variable j, it will be filled in with
# the average value of variable j (using the other non-missing values to compute
# the average.
# Params:
# data_matrix - a Numpy matrix that contains the data - the columns of this
# matrix are individual observations, and the rows are variables (i.e. dimensions)
# Returns:
# no return value - matrix is edited IN PLACE
def impute_missing_data(data_matrix):
# First compute the average observation (column vector) using only
# non-missing data
row_sums = data_matrix.sum(axis=1)
counts = (data_matrix!=0).sum(axis=1)
row_avgs = row_sums / counts
# Now, find the observations that have missing variables and fill them in
# with the corresponding averages
row_ids, col_ids = where(data_matrix==0)
data_matrix[row_ids, col_ids] = row_avgs[row_ids]
# Scales and centers a data matrix. Specifically, it subtracts the mean
# observation from all observations, and divides all variables by their standard
# deviation
# Params:
# data_matrix - a Numpy matrix that contains the data - the columns of this
# matrix are individual observations, and the rows are variables (i.e. dimensions)
# reference_matrix - If provided, the mean and standard deviation will be computed
# from this matrix, and then APPLIED to data_matrix
# Returns:
# new_matrix - a new scaled matrix of the same size
def scale_and_center(data_matrix, reference_matrix=None, scale=False):
if(reference_matrix==None):
reference_matrix = data_matrix
# First compute the average observation (column vector) and subtract from
# every other observation.
(n_vars, n_obs) = data_matrix.shape
row_sums = reference_matrix.sum(axis=1)
row_avgs = row_sums / n_obs
new_matrix = data_matrix - row_avgs
# Also scale each variable by its standard deviation, if desired
# Var[X] = sum( (X - mean_x)^2) / N
if(scale):
sums_of_squares = square(reference_matrix - row_avgs).sum(axis=1)
row_sds = sqrt(sums_of_squares / n_obs)
new_matrix /= row_sds
return new_matrix
# A helper method that computes eigenvectors / eigenvalues of a matrix, and then
# sorts them in descending order (The default eig function in Numpy does not
# guarantee that they will be in any particular order)
def sorted_eig(m):
evals, evects = eigh(m)
sort_order = evals.argsort()[::-1]
evals = np.sort(evals)[::-1]
evects = evects[:,sort_order]
return evals, evects
# Exctracts the top K principal components from a data matrix in the standard (slow)
# way. It computes the full covariance matrix and the corresponding eigenvectors
# Params:
# data_matrix - a Numpy matrix that contains the data - the columns of this
# matrix are individual observations, and the rows are variables (i.e. dimensions)
# n_pcs - the deisred number of Principal components
def pca(data_matrix, n_pcs):
(n_vars, n_obs) = data_matrix.shape
n_pcs = min(n_pcs, n_vars)
# compute the covariance matrix of the observations
cov_matrix = matrix(cov(data_matrix))
# compute the spectral decomposition
eig_vals, eig_vectors = sorted_eig(cov_matrix)
rank = sum(eig_vals > .0001)
#print ("Nonzero eigvals: %d" % rank)
trunc_eigs = eig_vals.tolist()[:(rank+5)]
#print "Eigen vals: " + str(trunc_eigs)
#eig_ratios = [trunc_eigs[i] / trunc_eigs[i+1] for i in range(len(trunc_eigs)-1)]
#print "Eigen ratios: " + str(eig_ratios)
n_pcs = min(n_pcs, rank)
eig_vectors = matrix(eig_vectors)
principal_components = real(eig_vectors[:,:n_pcs])
projected_data = transpose(principal_components) * data_matrix
return principal_components, projected_data
# Extracts the top K principal components from a data matrix, using the iterative
# approach explained in "EM Algorithms for PCA and SPCA, by Sam Roweis". If the
# number of Principal Components is relatively small, this is more efficient than
# the traditional approach because we don't need to compute the full covariance
# matrix.
# Params:
# data_matrix - a Numpy matrix that contains the data - the columns of this
# matrix are individual observations, and the rows are variables (i.e. dimensions)
# n_pcs - the deisred number of Principal components
def em_pca(data_matrix, n_pcs, tolerance=.000001):
[n_vars, n_obs] = data_matrix.shape
# Start with an initial guess for the loadings matrix (or eigenvectors)
loadings = matrix(rand_array(n_vars, n_pcs))
prev_err = float("inf")
while(True):
# E-STEP - compute new scores based on current loadings
# a.k.a. compute projected data based on current eigenvectors
proj_data = inv(loadings.transpose() * loadings) * loadings.transpose() * data_matrix
# M-STEP - compute new loadings based on current scores
# a.k..a. compute best eigenvectors based on current projected data
loadings = data_matrix * proj_data.transpose() * inv(proj_data * proj_data.transpose())
# Compute the squared error
error = square(data_matrix - loadings * proj_data).sum()
# If the error is no longer decreasing, then we have converged
error_ratio = error / prev_err
print(error_ratio)
if (error_ratio > (1 - tolerance)):
break
prev_err = error
# Now that the EM algorithm has converged, the loadings span the correct lower-
# dimensional space, and the data is projected into it. We now use the regular
# PCA on this lower-dimensional matrix to finish it off and decorrelate the
# dimensions
proj_matrix = inv(loadings.transpose() * loadings) * loadings.transpose()
proj_data = proj_matrix * data_matrix
new_cov = cov(proj_data)
orth_cov, rmat = qr(new_cov)
del(rmat)
orth_cov = matrix(orth_cov)
"""
new_pcs, new_projected_data = pca(proj_data, n_pcs)
print proj_matrix.shape
print new_pcs.shape
print new_projected_data.shape
final_pcs = (new_pcs * proj_matrix).transpose()
new_data = final_pcs.transpose() * data_matrix
"""
import pdb; pdb.set_trace()
return final_pcs , new_projected_data
def run_opursuit(pace_group, gamma):
data_matrix = column_stack(pace_group)
O = (data_matrix!=0)*1 # Observation matrix - 1 where we have data, 0 where we do not
L,C,term,n_iter = opursuit(data_matrix, O, gamma)
outlier_scores = sqrt(sum(square(C), axis=0))
return list(outlier_scores)
# Preprocesses a group of pace vectors by removing bad dimensions, scaling and centering,
# and applying Principal Component Analysis
# Params:
# pace_group - a list of Numpy column vectors to be preprocessed
# n_pcs - The number of principal components to use for PCA
# scale - Whether or not to do scaling after centering - see scale_and_center()
def preprocess_group(pace_group, n_pcs=0, scale=True):
data_matrix = column_stack(pace_group)
scale_and_center(data_matrix, scale)
pcs, projected_data = pca(data_matrix, n_pcs)
em_pcs, em_projected_data = em_pca(data_matrix, n_pcs)
import pdb; pdb.set_trace()
# Split the matrix back into vectors
new_group = [projected_data[:,i] for i in xrange(len(pace_group))]
return new_group
# Preprocesses many groups of pace vectors by removing bad dimensions, scaling
# and centering, and applying PCA. Some of this preprocessing can be done in parallel
# for each group.
# Params:
# pace_grouped - The data to be preprocessed. Should bea dictionary which
# maps group_ids --> lists of Numpy column vectors
# perc_missing allowed - a number between 0 and 1 showing how much missing
# data is allowed in a given dimension. As usual, missing data is marked
# by the value 0, since a pace of 0 is impossible
# n_pcs - the number of principal components to extract during PCA
# scale - whether or not to scale each variable by its standard deviation -
# see scale_and_center() for more details
# pool - An optional multiprocessing.Pool if parallel processing is desired
def preprocess_data(pace_grouped, n_pcs, perc_missing_allowed=.05, scale=True, pool=DefaultPool()):
print(perc_missing_allowed)
# First, remove the dimensions that have too much missing data.
pace_grouped = remove_bad_dimensions_grouped(pace_grouped, perc_missing_allowed)
# Now, prepare the preprocess_group() function to be mapped onto the groups
# by "freezing" the other parameters
#preprocessing_func = partial(preprocess_group, n_pcs=n_pcs, scale=scale)
preprocessing_func = run_opursuit
# Make the pace groups into a list instead of a dictionary so they can be mapped
sorted_keys = sorted(pace_grouped)
pace_groups = [pace_grouped[key] for key in sorted_keys]
# Perform the preprocessing on all groups - if pool is a multiprocessing Pool,
# this will be done in parallel
processed_groups = pool.map(preprocessing_func, pace_groups)
# Create a new dictionary which has the same structure as pace_grouped, but with
# the preprocessed vectors output by preprocess_group()
new_pace_grouped = {}
for i in xrange(len(sorted_keys)):
new_pace_grouped[sorted_keys[i]] = processed_groups[i]
return new_pace_grouped