forked from FraLuca/STSGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_h36_3d.py
194 lines (129 loc) · 6.98 KB
/
main_h36_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
from utils import h36motion3d as datasets
from torch.utils.data import DataLoader
from model import *
import matplotlib.pyplot as plt
import torch.optim as optim
import torch.autograd
import torch
import numpy as np
from utils.loss_funcs import *
from utils.data_utils import define_actions
from utils.h36_3d_viz import visualize
from utils.parser import args
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device: %s'%device)
model = Model(args.input_dim,args.input_n,
args.output_n,args.st_gcnn_dropout,args.joints_to_consider,args.n_tcnn_layers,args.tcnn_kernel_size,args.tcnn_dropout).to(device)
print('total number of parameters of the network is: '+str(sum(p.numel() for p in model.parameters() if p.requires_grad)))
model_name='h36_3d_'+str(args.output_n)+'frames_ckpt'
def train():
optimizer=optim.Adam(model.parameters(),lr=args.lr,weight_decay=1e-05)
if args.use_scheduler:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
train_loss = []
val_loss = []
dataset = datasets.Datasets(args.data_dir,args.input_n,args.output_n,args.skip_rate, split=0)
print('>>> Training dataset length: {:d}'.format(dataset.__len__()))
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True)
vald_dataset = datasets.Datasets(args.data_dir,args.input_n,args.output_n,args.skip_rate, split=1)
print('>>> Validation dataset length: {:d}'.format(vald_dataset.__len__()))
vald_loader = DataLoader(vald_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True)
dim_used = np.array([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68,
75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92])
for epoch in range(args.n_epochs):
running_loss=0
n=0
model.train()
for cnt,batch in enumerate(data_loader):
batch=batch.to(device)
batch_dim=batch.shape[0]
n+=batch_dim
sequences_train=batch[:, 0:args.input_n, dim_used].view(-1,args.input_n,len(dim_used)//3,3).permute(0,3,1,2)
sequences_gt=batch[:, args.input_n:args.input_n+args.output_n, dim_used].view(-1,args.output_n,len(dim_used)//3,3)
optimizer.zero_grad()
sequences_predict=model(sequences_train).permute(0,1,3,2)
loss=mpjpe_error(sequences_predict,sequences_gt)
if cnt % 200 == 0:
print('[%d, %5d] training loss: %.3f' %(epoch + 1, cnt + 1, loss.item()))
loss.backward()
if args.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(),args.clip_grad)
optimizer.step()
running_loss += loss*batch_dim
train_loss.append(running_loss.detach().cpu()/n)
model .eval()
with torch.no_grad():
running_loss=0
n=0
for cnt,batch in enumerate(vald_loader):
batch=batch.to(device)
batch_dim=batch.shape[0]
n+=batch_dim
sequences_train=batch[:, 0:args.input_n, dim_used].view(-1,args.input_n,len(dim_used)//3,3).permute(0,3,1,2)
sequences_gt=batch[:, args.input_n:args.input_n+args.output_n, dim_used].view(-1,args.output_n,len(dim_used)//3,3)
sequences_predict=model(sequences_train).permute(0,1,3,2)
loss=mpjpe_error(sequences_predict,sequences_gt)
if cnt % 200 == 0:
print('[%d, %5d] validation loss: %.3f' %(epoch + 1, cnt + 1, loss.item()))
running_loss+=loss*batch_dim
val_loss.append(running_loss.detach().cpu()/n)
if args.use_scheduler:
scheduler.step()
if (epoch+1)%10==0:
print('----saving model-----')
torch.save(model.state_dict(),os.path.join(args.model_path,model_name))
plt.figure(1)
plt.plot(train_loss, 'r', label='Train loss')
plt.plot(val_loss, 'g', label='Val loss')
plt.legend()
plt.show()
def test():
model.load_state_dict(torch.load(os.path.join(args.model_path,model_name)))
model.eval()
accum_loss=0
n_batches=0 # number of batches for all the sequences
actions=define_actions(args.actions_to_consider)
dim_used = np.array([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68,
75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92])
# joints at same loc
joint_to_ignore = np.array([16, 20, 23, 24, 28, 31])
index_to_ignore = np.concatenate((joint_to_ignore * 3, joint_to_ignore * 3 + 1, joint_to_ignore * 3 + 2))
joint_equal = np.array([13, 19, 22, 13, 27, 30])
index_to_equal = np.concatenate((joint_equal * 3, joint_equal * 3 + 1, joint_equal * 3 + 2))
for action in actions:
running_loss=0
n=0
dataset_test = datasets.Datasets(args.data_dir,args.input_n,args.output_n,args.skip_rate, split=2,actions=[action])
print('>>> test action for sequences: {:d}'.format(dataset_test.__len__()))
test_loader = DataLoader(dataset_test, batch_size=args.batch_size_test, shuffle=False, num_workers=0, pin_memory=True)
for cnt,batch in enumerate(test_loader):
with torch.no_grad():
batch=batch.to(device)
batch_dim=batch.shape[0]
n+=batch_dim
all_joints_seq=batch.clone()[:, args.input_n:args.input_n+args.output_n,:]
sequences_train=batch[:, 0:args.input_n, dim_used].view(-1,args.input_n,len(dim_used)//3,3).permute(0,3,1,2)
sequences_gt=batch[:, args.input_n:args.input_n+args.output_n, :]
sequences_predict=model(sequences_train).permute(0,1,3,2).contiguous().view(-1,args.output_n,len(dim_used))
all_joints_seq[:,:,dim_used] = sequences_predict
all_joints_seq[:,:,index_to_ignore] = all_joints_seq[:,:,index_to_equal]
loss=mpjpe_error(all_joints_seq.view(-1,args.output_n,32,3),sequences_gt.view(-1,args.output_n,32,3))
running_loss+=loss*batch_dim
accum_loss+=loss*batch_dim
print('loss at test subject for action : '+str(action)+ ' is: '+ str(running_loss/n))
n_batches+=n
print('overall average loss in mm is: '+str(accum_loss/n_batches))
if __name__ == '__main__':
if args.mode == 'train':
train()
elif args.mode == 'test':
test()
elif args.mode=='viz':
model.load_state_dict(torch.load(os.path.join(args.model_path,model_name)))
model.eval()
visualize(args.input_n,args.output_n,args.visualize_from,args.data_dir,model,device,args.n_viz,args.skip_rate,args.actions_to_consider)