Skip to content

Latest commit

 

History

History
97 lines (89 loc) · 3.06 KB

README.md

File metadata and controls

97 lines (89 loc) · 3.06 KB

Hierarchical Matching and Reasoning for Multi-Query Image Retrieval

Hierarchical Matching and Reasoning for Multi-Query Image Retrieval

Zhong Ji, Zhihao Li, Yan Zhang, Haoran Wang, Yanwei Pang, Xuelong Li. Neural Networks 2024

PyTorch implementation of our method for multi-query image retrieval.

Requirements

  • Setup a conda environment and install some prerequisite packages including
conda create -n HMRN python=3.8    # Create a virtual environment
conda activate HMRN         	   # Activate virtual environment
conda install jupyter scikit-image cython opencv seaborn nltk pycairo h5py  # Install dependencies
python -m nltk.downloader all	   # Install NLTK data
  • Please also install PyTorch 2.0.1 (or higher), torchvision and torchtext.

Data

Refer DrillDown to download images, features and annotations of Visual Genome.

Download DrillDown/data/caches from DrillDown and put the directory under HMRN/data

data
├── caches
│   ├── raw_test.txt 
│   ├── vg_attributes_vocab_1000.txt
│   ├── vg_objects_vocab_1600.txt 
│   ├── vg_objects_vocab_2500.txt 
│   ├── vg_relations_vocab_500.txt 
│   ├── vg_scenedb.pkl                 # auto-generated upon initial execution
│   ├── vg_test.txt 
│   ├── vg_train.txt 
│   ├── vg_val.txt 
│   ├── vg_vocab_14284.pkl  
│   
├── vg
│   ├── global_features 
│   │      ├── xxx.npz
│   │      └── ...
│   │ 
│   ├── region_36_final   
│   │      ├── xxx.npz
│   │      └── ...
│   │ 
│   └── rg_jsons 
│   │      ├── xxx.json
│   │      └── ...
│   │ 
│   └── sg_xmls
│   │      ├── xxx.xml
│   │      └── ...
│   │ 
│   └── VG_100K
│   │      ├── xxx.jpg
│   │      └── ...
│   │ 
│   └── VG_100K_2
│   │      ├── xxx.jpg
│   │      └── ...
│

Training

  • Train HMRN I-T
python train.py --cross_attention_direction I-T
  • Train HMRN T-I
python train.py --cross_attention_direction T-I

Evaluation

Please rename the saved HMRN I-T and HMRN T-I model as model_best.pth.tar, then refer to the following order to run the evaluation script.

  • Evaluate HMRN I-T or HMRN T-I
python evaluation_individual.py
  • Evaluate HMRN ensemble
python evaluation_ensemble.py

Acknowledgment

This codebase is partially based on DrillDown and SGRAF.

Citation

If you find our paper/code useful, please cite the following paper:

@article{ji2024hierarchical,
  title={Hierarchical matching and reasoning for multi-query image retrieval},
  author={Ji, Zhong and Li, Zhihao and Zhang, Yan and Wang, Haoran and Pang, Yanwei and Li, Xuelong},
  journal={Neural Networks},
  pages={106200},
  year={2024},
  publisher={Elsevier}
}