-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodels_mage.py
375 lines (296 loc) · 16.4 KB
/
models_mage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from functools import partial
import torch
import torch.nn as nn
from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp
from util.pos_embed import get_2d_sincos_pos_embed
from taming.models.vqgan import VQModel
from omegaconf import OmegaConf
import numpy as np
import scipy.stats as stats
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
with torch.cuda.amp.autocast(enabled=False):
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
attn = attn - torch.max(attn, dim=-1, keepdim=True)[0]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
if return_attention:
_, attn = self.attn(self.norm1(x))
return attn
else:
y, _ = self.attn(self.norm1(x))
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LabelSmoothingCrossEntropy(nn.Module):
""" NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1):
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, vocab_size, hidden_size, max_position_embeddings, dropout=0.1):
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))
torch.nn.init.normal_(self.word_embeddings.weight, std=.02)
torch.nn.init.normal_(self.position_embeddings.weight, std=.02)
def forward(
self, input_ids
):
input_shape = input_ids.size()
seq_length = input_shape[1]
position_ids = self.position_ids[:, :seq_length]
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MlmLayer(nn.Module):
def __init__(self, feat_emb_dim, word_emb_dim, vocab_size):
super().__init__()
self.fc = nn.Linear(feat_emb_dim, word_emb_dim)
self.gelu = nn.GELU()
self.ln = nn.LayerNorm(word_emb_dim)
self.bias = nn.Parameter(torch.zeros(1, 1, vocab_size))
def forward(self, x, word_embeddings):
mlm_hidden = self.fc(x)
mlm_hidden = self.gelu(mlm_hidden)
mlm_hidden = self.ln(mlm_hidden)
word_embeddings = word_embeddings.transpose(0, 1)
logits = torch.matmul(mlm_hidden, word_embeddings)
logits = logits + self.bias
return logits
class MaskedGenerativeEncoderViT(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=256, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25,
vqgan_ckpt_path='vqgan_jax_strongaug.ckpt'):
super().__init__()
# --------------------------------------------------------------------------
# VQGAN specifics
config = OmegaConf.load('config/vqgan.yaml').model
self.vqgan = VQModel(ddconfig=config.params.ddconfig,
n_embed=config.params.n_embed,
embed_dim=config.params.embed_dim,
ckpt_path=vqgan_ckpt_path)
for param in self.vqgan.parameters():
param.requires_grad = False
self.codebook_size = config.params.n_embed
vocab_size = self.codebook_size + 1000 + 1 # 1024 codebook size, 1000 classes, 1 for mask token.
self.fake_class_label = self.codebook_size + 1100 - 1024
self.mask_token_label = vocab_size - 1
self.token_emb = BertEmbeddings(vocab_size=vocab_size,
hidden_size=embed_dim,
max_position_embeddings=256+1,
dropout=0.1)
# MAGE variant masking ratio
self.mask_ratio_min = mask_ratio_min
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std,
(mask_ratio_max - mask_ratio_mu) / mask_ratio_std,
loc=mask_ratio_mu, scale=mask_ratio_std)
# --------------------------------------------------------------------------
# MAGE encoder specifics
dropout_rate = 0.1
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MAGE decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.pad_with_cls_token = True
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim)) # learnable pos embedding
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size**2 * in_chans, bias=True) # decoder to patch
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MlmLayer
self.mlm_layer = MlmLayer(feat_emb_dim=decoder_embed_dim, word_emb_dim=embed_dim, vocab_size=vocab_size)
self.norm_pix_loss = norm_pix_loss
self.criterion = LabelSmoothingCrossEntropy(smoothing=0.1)
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, x):
# tokenization
with torch.no_grad():
z_q, _, token_tuple = self.vqgan.encode(x)
_, _, token_indices = token_tuple
token_indices = token_indices.reshape(z_q.size(0), -1)
gt_indices = token_indices.clone().detach().long()
# masking
bsz, seq_len = token_indices.size()
mask_ratio_min = self.mask_ratio_min
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min))
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
# it is possible that two elements of the noise is the same, so do a while loop to avoid it
while True:
noise = torch.rand(bsz, seq_len, device=x.device) # noise in [0, 1]
sorted_noise, _ = torch.sort(noise, dim=1) # ascend: small is remove, large is keep
cutoff_drop = sorted_noise[:, num_dropped_tokens-1:num_dropped_tokens]
cutoff_mask = sorted_noise[:, num_masked_tokens-1:num_masked_tokens]
token_drop_mask = (noise <= cutoff_drop).float()
token_all_mask = (noise <= cutoff_mask).float()
if token_drop_mask.sum() == bsz*num_dropped_tokens and token_all_mask.sum() == bsz*num_masked_tokens:
break
else:
print("Rerandom the noise!")
# print(mask_rate, num_dropped_tokens, num_masked_tokens, token_drop_mask.sum(dim=1), token_all_mask.sum(dim=1))
token_indices[token_all_mask.nonzero(as_tuple=True)] = self.mask_token_label
# print("Masekd num token:", torch.sum(token_indices == self.mask_token_label, dim=1))
# concate class token
token_indices = torch.cat([torch.zeros(token_indices.size(0), 1).cuda(device=token_indices.device), token_indices], dim=1)
token_indices[:, 0] = self.fake_class_label
token_drop_mask = torch.cat([torch.zeros(token_indices.size(0), 1).cuda(), token_drop_mask], dim=1)
token_all_mask = torch.cat([torch.zeros(token_indices.size(0), 1).cuda(), token_all_mask], dim=1)
token_indices = token_indices.long()
# bert embedding
input_embeddings = self.token_emb(token_indices)
# print("Input embedding shape:", input_embeddings.shape)
bsz, seq_len, emb_dim = input_embeddings.shape
# dropping
token_keep_mask = 1 - token_drop_mask
input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim)
# print("Input embedding after drop shape:", input_embeddings_after_drop.shape)
# apply Transformer blocks
x = input_embeddings_after_drop
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# print("Encoder representation shape:", x.shape)
return x, gt_indices, token_drop_mask, token_all_mask
def forward_decoder(self, x, token_drop_mask, token_all_mask):
# embed tokens
x = self.decoder_embed(x)
# append mask tokens to sequence
if self.pad_with_cls_token:
mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1)
else:
mask_tokens = self.mask_token.repeat(token_all_mask.shape[0], token_all_mask.shape[1], 1)
# put undropped tokens into original sequence
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
# set undropped but masked positions with mask
x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad)
# add pos embed
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
word_embeddings = self.token_emb.word_embeddings.weight.data.detach()
x = self.mlm_layer(x, word_embeddings)
# print("Logits shape:", x.shape)
return x
def forward_loss(self, gt_indices, logits, mask):
bsz, seq_len = gt_indices.size()
# logits and mask are with seq_len+1 but gt_indices is with seq_len
loss = self.criterion(logits[:, 1:, :self.codebook_size].reshape(bsz*seq_len, -1), gt_indices.reshape(bsz*seq_len))
loss = loss.reshape(bsz, seq_len)
loss = (loss * mask[:, 1:]).sum() / mask[:, 1:].sum() # mean loss on removed patches
return loss
def forward(self, imgs):
latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(imgs)
logits = self.forward_decoder(latent, token_drop_mask, token_all_mask)
loss = self.forward_loss(gt_indices, logits, token_all_mask)
return loss, imgs, token_all_mask
def mage_vit_base_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mage_vit_large_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model