-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
194 lines (167 loc) · 5.64 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2022 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax implementation of ResNet V1."""
# Some parts of the code are taken from https://github.com/google/flax/blob/main/examples/imagenet/models.py.
from functools import partial
from typing import Any, Callable, Sequence, Tuple
from flax import linen as nn
import jax.numpy as jnp
from jax import random
Array = Any
ModuleDef = Any
KeyArray = random.KeyArray
DTypeLikeInexact = Any
class MLP(nn.Module):
"""Standard MLP."""
num_classes: int
num_neurons: Sequence[int]
dtype: Any = jnp.float32
act: Callable = nn.relu
@nn.compact
def __call__(self, x, train: bool = True):
x = x.reshape((x.shape[0], -1))
for i, num_neuron in enumerate(self.num_neurons):
x = nn.Dense(num_neuron, dtype=self.dtype)(x)
x = self.act(x)
x = nn.Dense(self.num_classes, dtype=self.dtype)(x)
x = jnp.asarray(x, self.dtype)
return x
class ResNetBlock(nn.Module):
"""ResNet block."""
filters: int
conv: ModuleDef
norm: ModuleDef
act: Callable
strides: Tuple[int, int] = (1, 1)
@nn.compact
def __call__(self, x,):
residual = x
y = self.conv(self.filters, (3, 3), strides=self.strides, padding=[(1, 1), (1, 1)])(x)
y = self.norm()(y)
y = self.act(y)
y = self.conv(self.filters, (3, 3), strides=(1, 1), padding=[(1, 1), (1, 1)])(y)
y = self.norm()(y)
if residual.shape != y.shape or self.strides != (1, 1):
residual = self.conv(self.filters, (1, 1),
self.strides, padding=[(0, 0), (0, 0)], name='conv_proj')(residual)
residual = self.norm(name='norm_proj')(residual)
return self.act(residual + y)
class BottleneckResNetBlock(nn.Module):
"""Bottleneck ResNet block."""
filters: int
conv: ModuleDef
norm: ModuleDef
act: Callable
strides: Tuple[int, int] = (1, 1)
@nn.compact
def __call__(self, x):
residual = x
y = self.conv(self.filters, (1, 1))(x)
y = self.norm()(y)
y = self.act(y)
y = self.conv(self.filters, (3, 3), self.strides)(y)
y = self.norm()(y)
y = self.act(y)
y = self.conv(self.filters * 4, (1, 1))(y)
y = self.norm(scale_init=nn.initializers.zeros_init())(y)
if residual.shape != y.shape:
residual = self.conv(
self.filters * 4, (1, 1), self.strides, name='conv_proj'
)(residual)
residual = self.norm(name='norm_proj')(residual)
return self.act(residual + y)
class ResNetBigCifar(nn.Module):
"""ResNetV1."""
stage_sizes: Sequence[int]
block_cls: ModuleDef
num_classes: int
num_filters: int = 64
dtype: Any = jnp.float32
act: Callable = nn.relu
conv: ModuleDef = nn.Conv
norm: ModuleDef = nn.BatchNorm
@nn.compact
def __call__(self, x, train: bool = True):
conv = partial(self.conv, use_bias=False, dtype=self.dtype)
norm = partial(self.norm,
use_running_average=not train,
momentum=0.9,
epsilon=1e-5,
dtype=self.dtype)
x = conv(self.num_filters, (3, 3), strides=(1, 1),
padding=[(1, 1), (1, 1)],
name='conv_init')(x)
x = norm(name='bn_init')(x)
x = nn.relu(x)
for i, block_size in enumerate(self.stage_sizes):
for j in range(block_size):
strides = (2, 2) if i > 0 and j == 0 else (1, 1)
x = self.block_cls(self.num_filters * 2 ** i,
strides=strides,
conv=conv,
norm=norm,
act=self.act)(x)
x = nn.avg_pool(x, (4, 4), strides=(4, 4), padding=[(0, 0), (0, 0)])
x = x.reshape(x.shape[0], -1)
x = nn.Dense(self.num_classes, dtype=self.dtype)(x)
x = jnp.asarray(x, self.dtype)
return x
class ResNetImagenet(nn.Module):
"""ResNetV1."""
stage_sizes: Sequence[int]
block_cls: ModuleDef
num_classes: int
num_filters: int = 64
dtype: Any = jnp.float32
act: Callable = nn.relu
conv: ModuleDef = nn.Conv
@nn.compact
def __call__(self, x, train: bool = True):
conv = partial(self.conv, use_bias=False, dtype=self.dtype)
norm = partial(
nn.BatchNorm,
use_running_average=not train,
momentum=0.9,
epsilon=1e-5,
dtype=self.dtype,
axis_name='batch',
)
x = conv(
self.num_filters,
(7, 7),
(2, 2),
padding=[(3, 3), (3, 3)],
name='conv_init',
)(x)
x = norm(name='bn_init')(x)
x = nn.relu(x)
x = nn.max_pool(x, (3, 3), strides=(2, 2), padding='SAME')
for i, block_size in enumerate(self.stage_sizes):
for j in range(block_size):
strides = (2, 2) if i > 0 and j == 0 else (1, 1)
x = self.block_cls(
self.num_filters * 2**i,
strides=strides,
conv=conv,
norm=norm,
act=self.act,
)(x)
x = jnp.mean(x, axis=(1, 2))
x = nn.Dense(self.num_classes, dtype=self.dtype)(x)
x = jnp.asarray(x, self.dtype)
return x
ResNet18 = partial(ResNetBigCifar, stage_sizes=[2, 2, 2, 2],
block_cls=ResNetBlock)
ResNet50_ImageNet = partial(ResNetImagenet, stage_sizes=[3, 4, 6, 3],
block_cls=BottleneckResNetBlock)