-
Notifications
You must be signed in to change notification settings - Fork 6
/
report.py
72 lines (51 loc) · 2.29 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python3.7
import argparse
from pathlib import Path
from typing import List, Tuple
import numpy as np
def main(args) -> None:
print(f"Reporting on {len(args.folders)} folders.")
main_metric: str = args.metrics[0]
best_epoch: List[int] = display_metric(args, main_metric, args.folders, args.axises)
for metric in args.metrics[1:]:
display_metric(args, metric, args.folders, args.axises, best_epoch)
def display_metric(args, metric: str, folders: List[str], axises: Tuple[int], best_epoch: List[int] = None):
print(f"{metric} (classes {axises})")
if not best_epoch:
get_epoch = True
best_epoch = [0] * len(folders)
else:
get_epoch = False
for i, folder in enumerate(folders):
file: Path = Path(folder, metric).with_suffix(".npy")
data: np.ndarray = np.load(file)[:, :, axises] # Epoch, sample, classes
averages: np.ndarray = data.mean(axis=(1, 2))
stds: np.ndarray = data.std(axis=(1, 2))
if get_epoch:
if args.mode == "max":
best_epoch[i] = np.argmax(averages)
elif args.mode == "min":
best_epoch[i] = np.argmin(averages)
val: float
val_std: float
if args.mode in ['max', 'min']:
val = averages[best_epoch[i]]
val_std = stds[best_epoch[i]]
else:
val = averages[-args.last_n_epc:].mean()
val_std = averages[-args.last_n_epc:].std()
print(f"\t{Path(folder).name}: {val:.{args.precision}f} ({val_std:.{args.precision}f}) at epoch {best_epoch[i]}")
return best_epoch
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Plot data over time')
parser.add_argument('--folders', type=str, required=True, nargs='+', help="The folders containing the file")
parser.add_argument('--metrics', type=str, required=True, nargs='+')
parser.add_argument('--axises', type=int, required=True, nargs='+')
parser.add_argument('--mode', type=str, default='max', choices=['max', 'min', 'avg'])
parser.add_argument('--last_n_epc', type=int, default=1)
parser.add_argument('--precision', type=int, default=4)
args = parser.parse_args()
print(args)
return args
if __name__ == "__main__":
main(get_args())