-
Notifications
You must be signed in to change notification settings - Fork 97
/
test.py
180 lines (125 loc) · 5.76 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python3
# MIT License
# Copyright (c) 2023 Hoel Kervadec
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import unittest
import torch
import numpy as np
import utils
class TestDice(unittest.TestCase):
def test_equal(self):
t = torch.zeros((1, 100, 100), dtype=torch.int64)
t[0, 40:60, 40:60] = 1
c = utils.class2one_hot(t, K=2)
self.assertEqual(utils.dice_coef(c, c)[0, 0], 1)
def test_empty(self):
t = torch.zeros((1, 100, 100), dtype=torch.int64)
t[0, 40:60, 40:60] = 1
c = utils.class2one_hot(t, K=2)
self.assertEqual(utils.dice_coef(c, c)[0, 0], 1)
def test_caca(self):
t = torch.zeros((1, 100, 100), dtype=torch.int64)
t[0, 40:60, 40:60] = 1
c = utils.class2one_hot(t, K=2)
z = torch.zeros_like(c)
z[0, 1, ...] = 1
self.assertEqual(utils.dice_coef(c, z, smooth=0)[0, 0], 0) # Annoying to deal with the almost equal thing
class TestHausdorff(unittest.TestCase):
def test_closure(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t[0, 50:60, :] = 1
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
self.assertTrue(torch.equal(utils.hausdorff(t2, t2), torch.zeros((1, 2))))
def test_empty(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
self.assertTrue(torch.equal(utils.hausdorff(t2, t2), torch.zeros((1, 2))))
def test_caca(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t[0, 50:60, :] = 1
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
z = torch.zeros_like(t)
z2 = utils.class2one_hot(z, K=2)
diag = (256**2 + 256**2) ** 0.5
# print(f"{diag=}")
# print(f"{utils.hausdorff(z2, t2)=}")
self.assertTrue(torch.equal(utils.hausdorff(z2, t2),
torch.tensor([[60, diag]], dtype=torch.float32)))
def test_proper(self):
t = torch.zeros((1, 256, 256), dtype=torch.int64)
t[0, 50:60, :] = 1
t2 = utils.class2one_hot(t, K=2)
self.assertEqual(tuple(t2.shape), (1, 2, 256, 256))
z = torch.zeros_like(t)
z[0, 80:90, :] = 1
z2 = utils.class2one_hot(z, K=2)
self.assertTrue(torch.equal(utils.hausdorff(z2, t2),
torch.tensor([[30, 30]], dtype=torch.float32)))
class TestDistMap(unittest.TestCase):
def test_closure(self):
a = np.zeros((1, 256, 256))
a[:, 50:60, :] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
neg = (res <= 0) * res
self.assertEqual(neg.sum(), (o * res).sum())
def test_full_coverage(self):
a = np.zeros((1, 256, 256))
a[:, 50:60, :] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
self.assertEqual((res[1] <= 0).sum(), a.sum())
self.assertEqual((res[1] > 0).sum(), (1 - a).sum())
def test_empty(self):
a = np.zeros((1, 256, 256))
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
self.assertEqual(res[1].sum(), 0)
self.assertEqual((res[0] <= 0).sum(), a.size)
def test_max_dist(self):
"""
The max dist for a box should be at the midle of the object, +-1
"""
a = np.zeros((1, 256, 256))
a[:, 1:254, 1:254] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 256, 256))
self.assertEqual(res[0].max(), 127)
self.assertEqual(np.unravel_index(res[0].argmax(), (256, 256)), (127, 127))
self.assertEqual(res[1].min(), -126)
self.assertEqual(np.unravel_index(res[1].argmin(), (256, 256)), (127, 127))
def test_border(self):
"""
Make sure the border inside the object is 0 in the distance map
"""
for l in range(3, 5):
a = np.zeros((1, 25, 25))
a[:, 3:3 + l, 3:3 + l] = 1
o = utils.class2one_hot(torch.Tensor(a).type(torch.int64), K=2).numpy()
res = utils.one_hot2dist(o[0])
self.assertEqual(res.shape, (2, 25, 25))
border = (res[1] == 0)
self.assertEqual(border.sum(), 4 * (l - 1))
if __name__ == "__main__":
unittest.main()