-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathmain.py
366 lines (301 loc) · 18.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#!/usr/bin/env python3.9
# MIT License
# Copyright (c) 2023 Hoel Kervadec
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import warnings
from pathlib import Path
from functools import reduce
from operator import add, itemgetter
from shutil import copytree, rmtree
from typing import Any, Callable, Optional, Tuple, cast
import torch
import numpy as np
import pandas as pd
import torch.nn.functional as F
from torch import Tensor
from torch.utils.data import DataLoader
from dataloader import get_loaders
from utils import map_
from utils import depth
from utils import probs2one_hot, probs2class
from utils import dice_coef, save_images, tqdm_, dice_batch
def setup(args, n_class: int) -> Tuple[Any, Any, Any, list[list[Callable]], list[list[float]], Callable]:
print("\n>>> Setting up")
cpu: bool = args.cpu or not torch.cuda.is_available()
device = torch.device("cpu") if cpu else torch.device("cuda")
if args.weights:
if cpu:
net = torch.load(args.weights, map_location='cpu')
else:
net = torch.load(args.weights)
print(f">> Restored weights from {args.weights} successfully.")
else:
net_class = getattr(__import__('networks'), args.network)
net = net_class(args.modalities, n_class).to(device)
net.init_weights()
net.to(device)
optimizer: Any # disable an error for the optmizer (ADAM and SGD not same type)
if args.use_sgd:
optimizer = torch.optim.SGD(net.parameters(), lr=args.l_rate, momentum=0.99, weight_decay=5e-4)
else:
optimizer = torch.optim.Adam(net.parameters(), lr=args.l_rate, betas=(0.9, 0.99), amsgrad=False)
# print(args.losses)
list_losses = eval(args.losses)
if depth(list_losses) == 1: # For compatibility reasons, avoid changing all the previous configuration files
list_losses = [list_losses]
loss_fns: list[list[Callable]] = []
for i, losses in enumerate(list_losses):
print(f">> {i}th list of losses: {losses}")
tmp: list[Callable] = []
for loss_name, loss_params, _ in losses:
loss_class = getattr(__import__('losses'), loss_name)
tmp.append(loss_class(**loss_params))
loss_fns.append(tmp)
loss_weights: list[list[float]] = [map_(itemgetter(2), losses) for losses in list_losses]
scheduler = getattr(__import__('scheduler'), args.scheduler)(**eval(args.scheduler_params))
return net, optimizer, device, loss_fns, loss_weights, scheduler
def do_epoch(mode: str, net: Any, device: Any, loaders: list[DataLoader], epc: int,
list_loss_fns: list[list[Callable]], list_loss_weights: list[list[float]], K: int,
savedir: str = "", optimizer: Any = None,
metric_axis: list[int] = [1],
compute_3d_dice: bool = False,
temperature: float = 1) -> Tuple[Tensor,
Tensor,
Optional[Tensor]]:
assert mode in ["train", "val", "dual"]
if mode == "train":
net.train()
desc = f">> Training ({epc})"
elif mode == "val":
net.eval()
desc = f">> Validation ({epc})"
total_iteration: int = sum(len(loader) for loader in loaders) # U
total_images: int = sum(len(loader.dataset) for loader in loaders) # D
n_loss: int = max(map(len, list_loss_fns))
all_dices: Tensor = torch.zeros((total_images, K), dtype=torch.float32, device=device)
loss_log: Tensor = torch.zeros((total_iteration, n_loss), dtype=torch.float32, device=device)
three_d_dices: Optional[Tensor]
if compute_3d_dice:
three_d_dices = torch.zeros((total_iteration, K), dtype=torch.float32, device=device)
else:
three_d_dices = None
done_img: int = 0
done_batch: int = 0
tq_iter = tqdm_(total=total_iteration, desc=desc)
for i, (loader, loss_fns, loss_weights) in enumerate(zip(loaders, list_loss_fns, list_loss_weights)):
for data in loader:
# t0 = time()
image: Tensor = data["images"].to(device)
target: Tensor = data["gt"].to(device)
filenames: list[str] = data["filenames"]
assert not target.requires_grad
labels: list[Tensor] = [e.to(device) for e in data["labels"]]
B, C, *_ = image.shape
# Reset gradients
if optimizer:
optimizer.zero_grad()
# Forward
pred_logits: Tensor = net(image)
pred_probs: Tensor = F.softmax(temperature * pred_logits, dim=1)
predicted_mask: Tensor = probs2one_hot(pred_probs.detach()) # Used only for dice computation
assert not predicted_mask.requires_grad
assert len(loss_fns) == len(loss_weights) == len(labels)
ziped = zip(loss_fns, labels, loss_weights)
losses = [w * loss_fn(pred_probs, label)
for loss_fn, label, w in ziped]
loss = reduce(add, losses)
assert loss.shape == (), loss.shape
# Backward
if optimizer:
loss.backward()
optimizer.step()
# Compute and log metrics
for j in range(len(loss_fns)):
loss_log[done_batch, j] = losses[j].detach()
sm_slice = slice(done_img, done_img + B) # Values only for current batch
dices: Tensor = dice_coef(predicted_mask, target)
assert dices.shape == (B, K), (dices.shape, B, K)
all_dices[sm_slice, ...] = dices
if compute_3d_dice:
three_d_DSC: Tensor = dice_batch(predicted_mask, target)
assert three_d_DSC.shape == (K,)
three_d_dices[done_batch] = three_d_DSC # type: ignore
# Save images
if savedir:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
predicted_class: Tensor = probs2class(pred_probs)
save_images(predicted_class, filenames, savedir, mode, epc)
# Logging
big_slice = slice(0, done_img + B) # Value for current and previous batches
dsc_dict: dict = {f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis} | \
({f"3d_DSC{n}": three_d_dices[:done_batch, n].mean() for n in metric_axis}
if three_d_dices is not None else {})
loss_dict = {f"loss_{i}": loss_log[:done_batch].mean(dim=0)[i] for i in range(n_loss)}
stat_dict = dsc_dict | loss_dict
nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()}
done_img += B
done_batch += 1
tq_iter.set_postfix({**nice_dict, "loader": str(i)})
tq_iter.update(1)
tq_iter.close()
print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items()))
return (loss_log.detach().cpu(),
all_dices.detach().cpu(),
three_d_dices.detach().cpu() if three_d_dices is not None else None)
def run(args: argparse.Namespace) -> dict[str, Tensor]:
n_class: int = args.n_class
lr: float = args.l_rate
savedir: str = args.workdir
n_epoch: int = args.n_epoch
val_f: int = args.val_loader_id
loss_fns: list[list[Callable]]
loss_weights: list[list[float]]
net, optimizer, device, loss_fns, loss_weights, scheduler = setup(args, n_class)
train_loaders: list[DataLoader]
val_loaders: list[DataLoader]
train_loaders, val_loaders = get_loaders(args, args.dataset,
args.batch_size, n_class,
args.debug, args.in_memory, args.dimensions, args.use_spacing)
n_tra: int = sum(len(tr_lo.dataset) for tr_lo in train_loaders) # Number of images in dataset
l_tra: int = sum(len(tr_lo) for tr_lo in train_loaders) # Number of iteration per epc: different if batch_size > 1
n_val: int = sum(len(vl_lo.dataset) for vl_lo in val_loaders)
l_val: int = sum(len(vl_lo) for vl_lo in val_loaders)
n_loss: int = max(map(len, loss_fns))
best_dice: Tensor = cast(Tensor, torch.zeros(1).type(torch.float32))
best_epoch: int = 0
metrics: dict[str, Tensor] = {"val_dice": torch.zeros((n_epoch, n_val, n_class)).type(torch.float32),
"val_loss": torch.zeros((n_epoch, l_val, len(loss_fns[val_f]))).type(torch.float32),
"tra_dice": torch.zeros((n_epoch, n_tra, n_class)).type(torch.float32),
"tra_loss": torch.zeros((n_epoch, l_tra, n_loss)).type(torch.float32)}
if args.compute_3d_dice:
metrics["val_3d_dsc"] = cast(Tensor, torch.zeros((n_epoch, l_val, n_class)).type(torch.float32))
print("\n>>> Starting the training")
for i in range(n_epoch):
# Do training and validation loops
tra_loss, tra_dice, _ = do_epoch("train", net, device, train_loaders, i,
loss_fns, loss_weights, n_class,
savedir=savedir if args.save_train else "",
optimizer=optimizer,
metric_axis=args.metric_axis,
temperature=args.temperature)
with torch.no_grad():
val_res = do_epoch("val", net, device, val_loaders, i,
[loss_fns[val_f]],
[loss_weights[val_f]],
n_class,
savedir=savedir,
metric_axis=args.metric_axis,
compute_3d_dice=args.compute_3d_dice,
temperature=args.temperature)
val_loss, val_dice, val_3d_dsc = val_res
# Sort and save the metrics
for k in metrics:
assert metrics[k][i].shape == eval(k).shape, (metrics[k][i].shape, eval(k).shape, k)
metrics[k][i] = eval(k)
for k, e in metrics.items():
np.save(Path(savedir, f"{k}.npy"), e.cpu().numpy())
df = pd.DataFrame({"tra_loss": metrics["tra_loss"].mean(dim=(1, 2)).numpy(),
"val_loss": metrics["val_loss"].mean(dim=(1, 2)).numpy(),
"tra_dice": metrics["tra_dice"][:, :, -1].mean(dim=1).numpy(),
"val_dice": metrics["val_dice"][:, :, -1].mean(dim=1).numpy()})
df.to_csv(Path(savedir, args.csv), float_format="%.4f", index_label="epoch")
# Save model if better
current_dice: Tensor = val_dice[:, args.metric_axis].mean()
if current_dice > best_dice:
best_epoch = i
best_dice = current_dice
with open(Path(savedir, "best_epoch.txt"), 'w') as f:
f.write(str(i))
best_folder = Path(savedir, "best_epoch")
if best_folder.exists():
rmtree(best_folder)
copytree(Path(savedir, f"iter{i:03d}"), Path(best_folder))
torch.save(net, Path(savedir, "best.pkl"))
optimizer, loss_fns, loss_weights = scheduler(i, optimizer, loss_fns, loss_weights)
# if args.schedule and (i > (best_epoch + 20)):
if args.schedule and (i % (best_epoch + 20) == 0): # Yeah, ugly but will clean that later
for param_group in optimizer.param_groups:
lr *= 0.5
param_group['lr'] = lr
print(f'>> New learning Rate: {lr}')
if i > 0 and not (i % 5):
maybe_3d = ', 3d_DSC: {best_3d_dsc:.3f}' if args.compute_3d_dice else ''
print(f">> Best results at epoch {best_epoch}: DSC: {best_dice:.3f}{maybe_3d}")
# Because displaying the results at the end is actually convenient
maybe_3d = ', 3d_DSC: {best_3d_dsc:.3f}' if args.compute_3d_dice else ''
print(f">> Best results at epoch {best_epoch}: DSC: {best_dice:.3f}{maybe_3d}")
for metric in metrics:
# Do not care about training values, nor the loss (keep it simple)
if "val" in metric and "loss" not in metric:
print(f"\t{metric}: {metrics[metric][best_epoch].mean(dim=0)}")
return metrics
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument("--csv", type=str, required=True)
parser.add_argument("--workdir", type=str, required=True)
parser.add_argument("--losses", type=str, required=True,
help="List of list of (loss_name, loss_params, bounds_name, bounds_params, fn, weight)")
parser.add_argument("--folders", type=str, required=True,
help="List of list of (subfolder, transform, is_hot)")
parser.add_argument("--network", type=str, required=True, help="The network to use")
parser.add_argument("--n_class", type=int, required=True)
parser.add_argument("--metric_axis", type=int, nargs='*', required=True, help="Classes to display metrics. \
Display only the average of everything if empty")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--cpu", action='store_true')
parser.add_argument("--in_memory", action='store_true')
parser.add_argument("--schedule", action='store_true')
parser.add_argument("--use_sgd", action='store_true')
parser.add_argument("--compute_3d_dice", action='store_true')
parser.add_argument("--save_train", action='store_true')
parser.add_argument("--use_spacing", action='store_true')
parser.add_argument("--no_assert_dataloader", action='store_true')
parser.add_argument("--ignore_norm_dataloader", action='store_true')
parser.add_argument("--group", action='store_true', help="Group the patient slices together for validation. \
Useful to compute the 3d dice, but might destroy the memory for datasets with a lot of slices per patient.")
parser.add_argument("--group_train", action='store_true', help="Group the patient slices together for training. \
Useful to compute the 3d dice, but might destroy the memory for datasets with a lot of slices per patient.")
parser.add_argument('--n_epoch', nargs='?', type=int, default=200,
help='# of the epochs')
parser.add_argument('--l_rate', nargs='?', type=float, default=5e-4,
help='Learning Rate')
parser.add_argument("--grp_regex", type=str, default=None)
parser.add_argument('--temperature', type=float, default=1, help="Temperature for the softmax")
parser.add_argument("--scheduler", type=str, default="DummyScheduler")
parser.add_argument("--scheduler_params", type=str, default="{}")
parser.add_argument("--modalities", type=int, default=1)
parser.add_argument("--dimensions", type=int, default=2)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument("--weights", type=str, default='', help="Stored weights to restore")
parser.add_argument("--training_folders", type=str, nargs="+", default=["train"])
parser.add_argument("--validation_folder", type=str, default="val")
parser.add_argument("--val_loader_id", type=int, default=-1, help="""
Kinda housefiry at the moment. When we have several train loader (for hybrid training
for instance), wants only one validation loader. The way the dataloading creation is
written at the moment, it will create several validation loader on the same topfolder (val),
but with different folders/bounds ; which will basically duplicate the evaluation.
""")
args = parser.parse_args()
if args.metric_axis == []:
args.metric_axis = list(range(args.n_class))
print("\n", args)
return args
if __name__ == '__main__':
run(get_args())