-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSmall_Language_Model.py
146 lines (122 loc) · 5.49 KB
/
Small_Language_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import time
# Set random seed for reproducibility
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
# Set device (GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}", flush=True)
# Define a simple Transformer-based language model
class SmallLanguageModel(nn.Module):
def __init__(self, vocab_size, embed_dim, num_heads, num_layers, hidden_dim, max_seq_len):
super(SmallLanguageModel, self).__init__()
self.token_embedding = nn.Embedding(vocab_size, embed_dim)
self.position_embedding = nn.Embedding(max_seq_len, embed_dim)
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim, nhead=num_heads, dim_feedforward=hidden_dim, batch_first=True
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.fc_out = nn.Linear(embed_dim, vocab_size)
def forward(self, x):
seq_len = x.size(1)
positions = torch.arange(0, seq_len, device=x.device).unsqueeze(0).expand(x.size(0), seq_len)
x = self.token_embedding(x) + self.position_embedding(positions)
x = self.transformer(x)
logits = self.fc_out(x)
return logits
# Dataset preparation
class TextDataset(Dataset):
def __init__(self, tokens, block_size):
self.tokens = torch.cat([tokens, torch.zeros(block_size, dtype=torch.long)])
self.block_size = block_size
def __len__(self):
return len(self.tokens) - self.block_size
def __getitem__(self, idx):
input_ids = self.tokens[idx : idx + self.block_size]
target_ids = self.tokens[idx + 1 : idx + self.block_size + 1]
return input_ids, target_ids
# Hyperparameters
vocab_size = 10000
embed_dim = 128
num_heads = 4
num_layers = 2
hidden_dim = 512
max_seq_len = 128
batch_size = 32
learning_rate = 1e-3
epochs = 5
block_size = max_seq_len - 1
# Dummy dataset for simplicity
print("Creating dummy dataset...", flush=True)
tokens = torch.randint(0, vocab_size, (10000,))
print("Dummy dataset created.", flush=True)
# Split dataset into training and validation sets
train_size = int(0.8 * len(tokens))
train_tokens, val_tokens = tokens[:train_size], tokens[train_size:]
train_dataset = TextDataset(train_tokens, block_size=block_size)
val_dataset = TextDataset(val_tokens, block_size=block_size)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, pin_memory=True)
# Model, loss function, and optimizer
model = SmallLanguageModel(vocab_size, embed_dim, num_heads, num_layers, hidden_dim, max_seq_len).to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=2)
# Training loop
print("Starting training...")
scaler = torch.cuda.amp.GradScaler() # Enable mixed precision training
for epoch in range(epochs):
model.train()
epoch_loss = 0
start_time = time.time()
for batch_idx, (input_ids, target_ids) in enumerate(tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}")):
input_ids, target_ids = input_ids.to(device), target_ids.to(device)
# Mixed precision forward pass
with torch.cuda.amp.autocast():
logits = model(input_ids)
loss = criterion(logits.view(-1, vocab_size), target_ids.view(-1))
# Backward pass
optimizer.zero_grad()
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) # Gradient clipping
scaler.step(optimizer)
scaler.update()
epoch_loss += loss.item()
if batch_idx % 10 == 0:
print(f"Batch {batch_idx}/{len(train_loader)} Loss: {loss.item():.4f}", flush=True)
scheduler.step(epoch_loss / len(train_loader))
print(f"Epoch {epoch + 1} completed in {time.time() - start_time:.2f}s. Avg Loss: {epoch_loss / len(train_loader):.4f}")
# Save the trained model
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'epoch': epoch + 1 # Save current epoch
}, "simple_language_model.pt")
print("Model training complete and saved to 'simple_language_model.pt'.")
# Validation step
print("Starting validation...")
model.eval()
with torch.no_grad():
val_loss = 0
correct = 0
total = 0
for batch_idx, (input_ids, target_ids) in enumerate(val_loader):
input_ids, target_ids = input_ids.to(device), target_ids.to(device)
logits = model(input_ids)
loss = criterion(logits.view(-1, vocab_size), target_ids.view(-1))
val_loss += loss.item()
# Accuracy calculation
predictions = torch.argmax(logits, dim=-1)
correct += (predictions == target_ids).sum().item()
total += target_ids.numel()
if batch_idx % 10 == 0:
print(f"Validation Batch {batch_idx}/{len(val_loader)} Loss: {loss.item():.4f}", flush=True)
accuracy = correct / total
print(f"Validation Loss: {val_loss / len(val_loader):.4f}", flush=True)
print(f"Validation Accuracy: {accuracy:.4f}", flush=True)