-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsetup.py
72 lines (65 loc) · 1.83 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from setuptools import setup, Extension
import numpy
import os
inc_dirs = []
inc_dirs.append(numpy.get_include())
lib_dirs = []
libs = []
# set commands to build the c assistance modules
extensions = [
Extension(
"fastkde.floodFillSearch",
["src/fastkde/floodFillSearch.pyx"],
libraries=libs,
library_dirs=lib_dirs,
include_dirs=inc_dirs,
runtime_library_dirs=lib_dirs,
),
Extension(
"fastkde.nufft",
["src/fastkde/nufft.pyx"],
libraries=libs,
library_dirs=lib_dirs,
include_dirs=inc_dirs,
runtime_library_dirs=lib_dirs,
),
]
# get revision information
with open("REVISION", "r") as fin:
revision = fin.read().rstrip()
# read the long description
with open("README.md", "r") as fin:
long_description = fin.read()
with open("requirements.txt", "r") as fin:
install_requires = fin.read().split()
extras = {
"test": ["pytest"],
"dev": [],
}
extras["all"] = sum(extras.values(), [])
extras["dev"] += extras["test"]
setup(
name="fastkde",
packages=["fastkde"],
version=revision,
description="Tools for fast and robust univariate and multivariate kernel density estimation",
long_description=long_description,
long_description_content_type="text/markdown",
author="Travis A. O'Brien",
author_email="[email protected]",
url="https://github.com/LBL-EESA/fastkde",
download_url="https://github.com/LBL-EESA/fastkde/archive/v{}.tar.gz".format(
revision
),
keywords=["statistics", "probability", "KDE", "kernel density estimation"],
py_modules=[
"fastkde.fastKDE",
"fastkde.empiricalCharacteristicFunction",
"fastkde.plot",
],
classifiers=[],
ext_modules=extensions,
install_requires=install_requires,
extras_require=extras,
where="src",
)