-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreference.bib
1093 lines (972 loc) · 36.4 KB
/
reference.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@inproceedings{Ross2011_AISTATS,
title={A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning},
author={Ross, St{\'e}phane and Gordon, Geoffrey J and Bagnell, J.Andrew},
booktitle={AISTATS},
year={2011}
}
@inproceedings{ross2011_CVPR,
title={Learning message-passing inference machines for structured prediction},
author={Ross, Stephane and Munoz, Daniel and Hebert, Martial and Bagnell, J Andrew},
booktitle={CVPR},
pages={2737--2744},
year={2011},
}
@article{Boots2011_IJRR,
title={Closing the learning-planning loop with predictive state representations},
author={Boots, Byron and Siddiqi, Sajid M and Gordon, Geoffrey J},
journal={IJRR},
volume={30},
number={7},
pages={954--966},
year={2011},
publisher={SAGE Publications}
}
@inproceedings{Zinkevich2003_ICML,
author = {Zinkevich, Martin},
booktitle = {ICML},
title = {{Online Convex Programming and Generalized Infinitesimal Gradient Ascent}},
year = {2003}
}
@article{Ahmed2015_Nips,
title={A New View of Predictive State Methods for Dynamical System Learning},
author={Hefny, Ahmed and Downey, Carlton and Gordon, Geoffrey},
journal={arXiv preprint arXiv:1505.05310},
year={2015}
}
@article{Ahmed2015_Nips_toputbackin,
title = {On Predictive Belief Methods for Dynamical System Learning},
author = {Hefny, Ahmed and Downey, Carlton and J. Gordon, Geoffrey},
journal = {NIPS},
year = {2015}
}
@article{Ralaivola2004,
author = {Ralaivola, Liva and D'Alche-Buc, Florence},
title = {{Dynamical modeling with kernels for nonlinear time series prediction}},
journal = {NIPS},
year = {2004}
}
@article{Wingate2006,
author = {Wingate, David and Singh, Satinder},
journal = {ICML},
pages = {1017--1024},
title = {{Kernel predictive linear Gaussian models for nonlinear stochastic dynamical systems}},
year = {2006}
}
@MISC {x_plane,
author = "Laminar Research",
title = "X-Plane",
howpublished = "DVD",
year = "2015"
}
@book{kleiber2008,
title={Applied econometrics with R},
author={Kleiber, Christian and Zeileis, Achim},
year={2008},
publisher={Springer Science \& Business Media}
}
% textbook on instrumental variables
@book{bowden1990,
title={Instrumental variables},
author={Bowden, Roger J and Turkington, Darrell A},
volume={8},
year={1990},
publisher={Cambridge University Press}
}
%% INSTRUMENTAL VARIABLE APPLICATION REFERENCES
@techreport{card1993,
title={Using geographic variation in college proximity to estimate the return to schooling},
author={Card, David},
year={1993},
institution={National Bureau of Economic Research}
}
@article{greenland2000,
title={An introduction to instrumental variables for epidemiologists},
author={Greenland, Sander},
journal={International Journal of Epidemiology},
volume={29},
number={4},
pages={722--729},
year={2000},
publisher={IEA}
}
@article{miguel2004,
title={Economic shocks and civil conflict: An instrumental variables approach},
author={Miguel, Edward and Satyanath, Shanker and Sergenti, Ernest},
journal={Journal of Political Economy},
volume={112},
number={4},
pages={725--753},
year={2004},
publisher={JSTOR}
}
@article{soderstrom2002,
title={Instrumental variable methods for system identification},
author={S{\"o}derstr{\"o}m, Torsten and Stoica, Petre},
journal={Circuits, Systems and Signal Processing},
volume={21},
number={1},
pages={1--9},
year={2002},
publisher={Springer}
}
@inproceedings{Boots11a,
Author = "Byron Boots and Geoffrey J. Gordon ",
Booktitle = "NIPS",
Title = "Predictive State Temporal Difference Learning",
Year = {2011}
}
@INPROCEEDINGS{Littman01,
author = {Michael L. Littman and Richard S. Sutton and Satinder Singh},
title = {Predictive Representations of State},
booktitle = {NIPS},
year = {2001},
pages = {1555--1561},
publisher = {MIT Press}
}
@inproceedings{Singh2004_UAI,
author = {Singh, Satinder and James, Michael R. and Rudary, Matthew R.},
title = {Predictive State Representations: A New Theory for Modeling Dynamical Systems},
booktitle = {UAI},
year = {2004},
}
@article{rao2008linear,
title={Linear models and generalizations},
author={Rao, C Radhakrishna and Toutenburg, Helge and Shalabh, Heuman C and Schomaker, M},
journal={Least Squares and Alternatives (3rd edition) Springer, Berlin Heidelberg New York},
year={2008}
}
Automatically generated by Mendeley Desktop 1.13.1
Any changes to this file will be lost if it is regenerated by Mendeley.
BibTeX export options can be customized via Options -> BibTeX in Mendeley Desktop
@book{Hardy_Book,
author = {Hardy, Godfrey H.},
publisher = {American Mathematical Society},
title = {{Divergent series}},
year = {2000}
}
@inproceedings{Boots2012_ICML,
author = {Boots, Byron and Gordon, Geoffrey},
booktitle = {ICML},
title = {{Two-manifold problems with applications to nolinear system identification}},
year = {2012}
}
@inproceedings{Hsu2009_COLT,
author = {Hsu, Daniel and {M. Kakade}, Sham and Zhang, Tong},
booktitle = {COLT},
title = {{A spectral algorithm for learning hidden markov models}},
year = {2009}
}
@inproceedings{Boots2011_AAAI,
author = {Boots, Byron and Gordon, Geoffrey},
booktitle = {AAAI},
title = {{An online spectral learning algorithm for partially observable nonlinear dynamical systems}},
year = {2011}
}
@misc{X-plane,
booktitle = {http://www.x-plane.com/desktop/home/},
title = {{X-Plane}},
url = {http://www.x-plane.com/desktop/home/}
}
@misc{DA42,
booktitle = {http://www.diamondaircraft.com/aircraft/da42/specs\_da42\_ng.php},
title = {{Diamond Aircraft (DA42-NG)}},
url = {http://www.diamondaircraft.com/aircraft/da42/specs\_da42\_ng.php}
}
@phdthesis{Boots2012_Thesis,
author = {Boots, Byron},
school = {Carnegie Mellon University},
title = {{Spectral Approaches to Learning Predictive Representations}},
year = {2012}
}
@inproceedings{littlestone2014,
title={From on-line to batch learning},
author={Littlestone, Nick},
booktitle={Proceedings of the second annual workshop on Computational learning theory},
pages={269--284},
year={2014}
}
@article{cesa2004,
title={On the generalization ability of on-line learning algorithms},
author={Cesa-Bianchi, Nicolo and Conconi, Alex and Gentile, Claudio},
journal={Information Theory, IEEE Transactions on},
volume={50},
number={9},
pages={2050--2057},
year={2004},
publisher={IEEE}
}
@book{cameron2005,
title={Microeconometrics: methods and applications},
author={Cameron, A Colin and Trivedi, Pravin K},
year={2005},
publisher={Cambridge university press}
}
@article{rao2008,
title={Linear models and generalizations},
author={Rao, C Radhakrishna and Toutenburg, Helge and Shalabh, Heuman C and Schomaker, M},
journal={Least Squares and Alternatives (3rd edition) Springer, Berlin Heidelberg New York},
year={2008}
}
@inproceedings{shalev2009mind,
title={Mind the duality gap: Logarithmic regret algorithms for online optimization},
author={Shalev-Shwartz, Shai and Kakade, Sham M},
booktitle={NIPS},
pages={1457--1464},
year={2009}
}
@article{hazan2007logarithmic,
title={Logarithmic regret algorithms for online convex optimization},
author={Hazan, Elad and Agarwal, Amit and Kale, Satyen},
journal={Machine Learning},
volume={69},
number={2-3},
pages={169--192},
year={2007},
}
@inproceedings{Ross2011,
title={No-Regret Reductions for Imitation Learning and Structured Prediction},
author={Ross, St{\'e}phane and Gordon, Geoffrey J and Bagnell, J. Andrew},
booktitle={AISTATS},
year={2011},
organization={Citeseer}
}
@inproceedings{Ross2010,
title={Efficient reductions for imitation learning},
author={Ross, St{\'e}phane and Bagnell, J. Andrew},
booktitle={AISTATS},
pages={661--668},
year={2010}
}
@article{Ross2011b,
title={Stability conditions for online learnability},
author={Ross, St{\'e}phane and Bagnell, J Andrew},
journal={arXiv preprint arXiv:1108.3154},
year={2011}
}
@article{Daume2009,
title={Search-based structured prediction},
author={Daum{\'e} III, Hal and Langford, John and Marcu, Daniel},
journal={Machine learning},
volume={75},
number={3},
pages={297--325},
year={2009},
publisher={Springer}
}
@article{Werbos1990,
title={Backpropagation through time: what it does and how to do it},
author={Werbos, Paul J},
journal={Proceedings of the IEEE},
volume={78},
number={10},
pages={1550--1560},
year={1990},
publisher={IEEE}
}
@inproceedings{Siddiqi07,
author = "Siddiqi, Sajid and Boots, Byron and Gordon, Geoffrey J.",
title = "A Constraint Generation Approach to Learning Stable Linear Dynamical Systems",
booktitle = "NIPS 20 (NIPS-07)",
year = "2007"
}
@inproceedings{Abbeel2005,
title={Learning vehicular dynamics, with application to modeling helicopters},
author={Abbeel, Pieter and Ganapathi, Varun and Ng, Andrew Y},
booktitle={NIPS},
pages={1--8},
year={2005}
}
@inproceedings{Abbeel2005b,
title={Learning first-order Markov models for control},
author={Abbeel, Pieter and Ng, Andrew Y},
booktitle={NIPS},
pages={1--8},
year={2005}
}
@inproceedings{Abbeel2005c,
title={Exploration and apprenticeship learning in reinforcement learning},
author={Abbeel, Pieter and Ng, Andrew Y},
booktitle={ICML},
pages={1--8},
year={2005},
organization={ACM}
}
@article{Bengio1994,
title={Learning long-term dependencies with gradient descent is difficult},
author={Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo},
journal={Neural Networks, IEEE Transactions on},
volume={5},
number={2},
pages={157--166},
year={1994},
publisher={IEEE}
}
@inproceedings{Coates2008,
author = {Coates, Adam and Abbeel, Pieter and Ng, Andrew Y.},
title = {Learning for Control from Multiple Demonstrations},
booktitle = {ICML},
year = {2008},
location = {Helsinki, Finland},
pages = {144--151},
address = {New York, NY, USA},
}
@article{Sutton1998,
year={1988},
journal={Machine Learning},
volume={3},
title={Learning to predict by the methods of temporal differences},
publisher={Kluwer Academic Publishers},
author={Sutton, RichardS.},
pages={9-44},
language={English}
}
@article{Khansari2011,
title={Learning stable nonlinear dynamical systems with gaussian mixture models},
author={Khansari-Zadeh, Seyed Mohammad and Billard, Aude},
journal={Robotics, IEEE Transactions on},
volume={27},
number={5},
pages={943--957},
year={2011},
publisher={IEEE}
}
@inproceedings{Langford2009,
title={Learning nonlinear dynamic models},
author={Langford, John and Salakhutdinov, Ruslan and Zhang, Tong},
booktitle={ICML},
pages={593--600},
year={2009},
organization={ACM}
}
@inproceedings{Wang2005,
title={Gaussian process dynamical models},
author={Wang, Jack and Hertzmann, Aaron and Blei, David M},
booktitle={NIPS},
pages={1441--1448},
year={2005}
}
%% ADDED FROM KDM KPCA REPORT
@article{Lazaro-Gredilla2010,
author = {L\'{a}zaro-Gredilla, M},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/Regression/lazaro-gredilla10a\_Sparse Spectrum Gaussian Process Regression.pdf:pdf},
journal = {The Journal of Machine Learning Research},
keywords = {computational efficiency,gaussian process,power spectrum,probabilistic regression,sparse approximation},
pages = {1865--1881},
title = {{Sparse spectrum Gaussian process regression}},
url = {http://dl.acm.org/citation.cfm?id=1859914},
volume = {11},
year = {2010}
}
@inproceedings{Rudary2005,
archivePrefix = {arXiv},
arxivId = {1207.1416},
author = {Rudary, Matthew and Singh, S and Wingate, David},
booktitle = {Conference on Uncertainty in Artificial Intelligence},
eprint = {1207.1416},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/SysID/Predictive Linear-Gaussian Models of Stochastic Dynamical Systems.pdf:pdf},
number = {21},
title = {{Predictive linear-Gaussian models of stochastic dynamical systems}},
url = {http://arxiv.org/abs/1207.1416},
year = {2005}
}
@article{Le2013,
author = {Le, Quoc and Sarl\'{o}s, Tamas and Smola, Alex},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/LeSarlosSmola\_ICML13.pdf:pdf},
journal = {ICML},
pages = {244--252},
title = {{Fastfood—Approximating Kernel Expansions in Loglinear Time}},
url = {http://ai.stanford.edu/~quocle/LeSarlosSmola\_ICML13\_supp.pdf},
year = {2013}
}
@article{ghahramani1999,
title={Learning nonlinear dynamical systems using an EM algorithm},
author={Ghahramani, Zoubin and Roweis, Sam T},
journal={Advances in neural information processing systems},
pages={431--437},
year={1999},
publisher={MIT; 1998}
}
@book{Scholkopf1998,
author = {Sch\"{o}lkopf, Bernhard and Burges, Christopher JC and Smola, Alexander J},
chapter = {20},
editor = {Sch\"{o}lkopf, Bernhard and Burges, Christopher J C and Smola, Alexander J.},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/scholkopf\_book\_Kernel Principal Component Analysis.pdf:pdf},
isbn = {0262194163},
publisher = {MIT Press},
title = {{Advances in Kernel Methods: Support Vector Learning}},
year = {1999}
}
@article{Ko2007,
author = {Ko, J and Klein, D J and Fox, D and Haehnel, D},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems},
doi = {10.1109/IROS.2007.4399284},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/other\_controls/gp-ukf-iros-07.pdf:pdf},
keywords = {Gaussian processes,Kalman filters,regression analy},
pages = {1901--1907},
title = {{GP-UKF: Unscented kalman filters with Gaussian process prediction and observation models}},
year = {2007}
}
@article{Mika1998,
author = {Mika, Sebastian and Sch\"{o}lkopf, B and Smola, AJ and M\"{u}ller, KR},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/Kernel PCA and De-Noising in Feature Spaces.pdf:pdf},
journal = {NIPS},
title = {{Kernel PCA and De-Noising in Feature Spaces.}},
url = {http://trac.assembla.com/mlea2\_cpa/export/9/doc/kpca-de-noising-feature-space.pdf},
year = {1998}
}
@article{Rahimi2008,
author = {Rahimi, Ali and Recht, Benjamin},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/08.nips\_Weighted Sums of Random Kitchen Sinks.pdf:pdf},
journal = {NIPS},
pages = {1--8},
title = {{Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning}},
year = {2008}
}
@article{Ralaivola2004,
abstract = {We consider the question of predicting nonlinear time series. Kernel Dy- namical Modeling (KDM), a new method based on kernels, is proposed as an extension to linear dynamical models. The kernel trick is used twice: first, to learn the parameters of themodel, and second, to compute preimages of the time series predicted in the feature space by means of Support Vector Regression. Our model shows strong connection with the classicKalman Filtermodel, with the kernel feature space as hidden state space. KernelDynamicalModeling is tested against two benchmark time series and achieves high quality predictions.},
author = {Ralaivola, Liva and D'Alche-Buc, Florence},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/Dynamical Modeling with Kernels.pdf:pdf},
journal = {NIPS},
title = {{Dynamical modeling with kernels for nonlinear time series prediction}},
url = {http://books.google.com/books?hl=en\&lr=\&id=0F-9C7K8fQ8C\&oi=fnd\&pg=PA129\&dq=Dynamical+Modeling+with+Kernels+for+Nonlinear+Time+Series+Prediction\&ots=TGMrqVPa15\&sig=HVqIFqaOeO2jyA34H0wftHC0ICU},
year = {2004}
}
@article{Narendra1990,
author = {Narendra, Kumpati S and Parthasarathy, Kannan},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/SysID/learning/neural\_network\_sys\_id.pdf:pdf},
journal = {IEEE Transactions on Neural Networks},
pages = {4--27},
title = {{Identification and control of dynamical systems using neural networks}},
url = {http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=80202},
year = {1990}
}
@article{Muller1997,
author = {M\"{u}ller, KR and Smola, AJ and R\"{a}tsch, G},
doi = {10.1007/BFb0020283},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/SysID/Predicting Time Series with SVM(SVR).pdf:pdf},
journal = {Artificial Neural Networks — ICANN'9},
pages = {999--1004},
title = {{Predicting time series with support vector machines}},
url = {http://link.springer.com/chapter/10.1007/BFb0020283},
volume = {1327},
year = {1997}
}
@article{Lefebvre2003,
address = {Coimbra, Portugal},
author = {Lefebvre, Tine and Bruyninckx, Herman and Schutter, Joris De},
booktitle = {Int. Conf. Advanced Robotics},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/other\_controls/non-minial\_state\_kalman\_filter\_param\_est.pdf:pdf},
pages = {136--141},
title = {{A non-minimal state Kalman filter for nonlinear parameter estimation applied to autonomous compliant motion}},
url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.908\&rep=rep1\&type=pdf},
year = {2003}
}
@article{Wingate2006,
author = {Wingate, David and Singh, Satinder},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/wingate\_Kernel Predictive Linear Gaussian Models.pdf:pdf},
journal = {ICML},
pages = {1017--1024},
title = {{Kernel predictive linear Gaussian models for nonlinear stochastic dynamical systems}},
url = {http://dl.acm.org/citation.cfm?id=1143972},
year = {2006}
}
@article{Basharat2009,
author = {Basharat, Arslan and Shah, M},
booktitle = {IEEE International Conference on Comuter Vision},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/SysID/Time Series Modeling (Chaos).pdf:pdf},
isbn = {9781424444199},
pages = {1941--1948},
title = {{Time series prediction by chaotic modeling of nonlinear dynamical systems}},
url = {http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5459429},
year = {2009}
}
@inproceedings{Gijsberts2011,
address = {Shanghai},
author = {Gijsberts, Arjan and Metta, Giorgio},
booktitle = {IEEE International Conference on Robotics and Automation},
doi = {10.1109/ICRA.2011.5980191},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/SysID/learning/Incremental Learning of Robot Dynamics using Random Features.pdf:pdf},
isbn = {978-1-61284-386-5},
month = may,
pages = {951--956},
publisher = {Ieee},
title = {{Incremental learning of robot dynamics using random features}},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980191 http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5980191},
year = {2011}
}
@article{Chaudhry2009,
author = {Chaudhry, R. and Ravichandran, A. and Hager, G. and Vidal, R.},
doi = {10.1109/CVPR.2009.5206821},
isbn = {978-1-4244-3992-8},
journal = {IEEE Conference on Computer Vision and Pattern Recognition},
month = jun,
pages = {1932--1939},
publisher = {Ieee},
title = {{Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions}},
year = {2009}
}
@article{Lopez-Paz2014,
archivePrefix = {arXiv},
arxivId = {arXiv:1402.0119v1},
author = {Lopez-Paz, D and Sra, Suvrit and Smola, A},
eprint = {arXiv:1402.0119v1},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/smola\_Randomized Nonlinear Component Analysis.pdf:pdf},
journal = {arXiv preprint arXiv:1402.0119},
title = {{Randomized Nonlinear Component Analysis}},
url = {http://arxiv.org/abs/1402.0119},
year = {2014}
}
@article{Kawahara2006,
abstract = {In this paper, we present a subspace method for learning nonlinear dynamical systems based on stochastic realization, in which state vectors are chosen using kernel canonical correlation analysis, and then state-space systems are identified through regression with the state vectors. We construct the theoretical underpin- ning and derive a concrete algorithm for nonlinear identification. The obtained algorithm needs no iterative optimization procedure and can be implemented on the basis of fast and reliable numerical schemes. The simulation result shows that our algorithm can express dynamics with a high degree of accuracy. 1},
author = {Kawahara, Yoshinobu and Yairi, Takehisa and Machida, Kazo},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/Kernel Subspace Method by Stochastic.pdf:pdf},
journal = {NIPS},
pages = {665--672},
title = {{A Kernel Subspace Method by Stochastic Realization for Learning Nonlinear Dynamical Systems}},
url = {http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=6287311},
year = {2006}
}
@inproceedings{Gerstner1997,
address = {Berlin/Heidelberg},
author = {Sch\"{o}lkopf, Bernhard and Smola, Alex J and Muller, Klaus Robert},
booktitle = {Artificial Neural Networks — ICANN'97},
doi = {10.1007/BFb0020124},
editor = {Gerstner, Wulfram and Germond, Alain and Hasler, Martin and Nicoud, Jean-Daniel},
file = {:C$\backslash$:/Users/arunvenk/Dropbox/CMU/Research/LearningInverseRobots/Lit/kernels/scholkopf\_Kernel Principal Component Analysis.pdf:pdf},
isbn = {3-540-63631-5},
keywords = {kpca},
mendeley-tags = {kpca},
publisher = {Springer-Verlag},
series = {Lecture Notes in Computer Science},
title = {{Kernel Principal Components Analysis}},
url = {http://www.springerlink.com/index/10.1007/BFb0020124},
volume = {1327},
year = {1997}
}
@book{van2012subspace,
title={Subspace identification for linear systems: {Theory—Implementation—Applications}},
author={Van Overschee, Peter and De Moor, BL},
year={2012},
publisher={Springer Science \& Business Media}
}
@article{bagnelllearning,
title={Learning Deep Inference Machines},
author={Bagnell, J Andrew and Grubb, Alex and Munoz, Daniel and Ross, Stephane},
journal = {The Learning Workshop},
year = {2010}
}
@article{Chan2007,
author = {Chan, Antoni B. and Vasconcelos, Nuno},
journal = {IEEE Conference on Computer Vision and Pattern Recognition},
month = jun,
pages = {1--6},
publisher = {Ieee},
title = {{Classifying Video with Kernel Dynamic Textures}},
year = {2007}
}
@inproceedings{langford2009learning,
title={Learning nonlinear dynamic models},
author={Langford, John and Salakhutdinov, Ruslan and Zhang, Tong},
booktitle={Proceedings of the 26th International Conference on Machine Learning (ICML-09)},
pages={75},
year={2009}
}
@article{venkatraman2015improving,
title={Improving multi-step prediction of learned time series models},
author={Venkatraman, Arun and Hebert, Martial and Bagnell, J Andrew},
journal={AAAI},
year={2015}
}
@inproceedings{ross2010efficient,
title={Efficient reductions for imitation learning},
author={Ross, St{\'e}phane and Bagnell, J. Andrew},
booktitle={AISTATS},
pages={661--668},
year={2010}
}
@article{tu2010,
title={Auto-context and its application to high-level vision tasks and 3d brain image segmentation},
author={Tu, Zhuowen and Bai, Xiang},
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on},
volume={32},
number={10},
pages={1744--1757},
year={2010},
publisher={IEEE}
}
@article{banerjee2005,
title={On the optimality of conditional expectation as a Bregman predictor},
author={Banerjee, Arindam and Guo, Xin and Wang, Hui},
journal={Information Theory, IEEE Transactions on},
volume={51},
number={7},
pages={2664--2669},
year={2005},
publisher={IEEE}
}
@article{daume2009search,
title={Search-based structured prediction},
author={Daum{\'e} III, Hal and Langford, John and Marcu, Daniel},
journal={Machine learning},
year={2009},
}
@article{jaeger2000observable,
title={Observable operator models for discrete stochastic time series},
author={Jaeger, Herbert},
journal={Neural Computation},
volume={12},
number={6},
pages={1371--1398},
year={2000},
publisher={MIT Press}
}
@inproceedings{rahimi2007,
title={Random features for large-scale kernel machines},
author={Rahimi, Ali and Recht, Benjamin},
booktitle={Advances in neural information processing systems},
pages={1177--1184},
year={2007}
}
@article{Hazan2012_ICML,
author = {Hazan, Elad and Kale, Satyen},
file = {:usr0/home/wensun/Documents/ICML2015.bib:bib},
journal = {29th International Conference on Machine Learning (ICML 2012)},
pages = {521--528},
title = {{Projection-free Online Learning}},
year = {2012}
}
@article{srebro2010optimistic,
title={Optimistic Rates for Learning with a Smooth Loss},
author={Srebro, Nathan and Sridharan, Karthik and Tewari, Ambuj},
journal={arXiv preprint arXiv:1009.3896},
year={2010}
}
@inproceedings{NIPS2015_5673,
title = {Supervised Learning for Dynamical System Learning},
author = {Hefny, Ahmed and Downey, Carlton and Gordon, Geoffrey J},
booktitle = {Advances in Neural Information Processing Systems 28},
year = {2015}
}
@inproceedings{kulesza2014low,
title={Low-rank spectral learning},
author={Kulesza, Alex and Rao, N Raj and Singh, Satinder},
booktitle={Proceedings of the 17th Conference on Artificial Intelligence and Statistics},
year={2014}
}
@inproceedings{Venkatraman-AAAI-16,
Author = {Arun Venkatraman and Wen Sun and Martial Hebert and J. Andrew Bagnell and Byron Boots},
Title = {Online Instrumental Variable Regression with Applications to Online Linear System Identification},
booktitle={AAAI},
year={2016}
}
@book{wei1994time,
title={Time series analysis},
author={Wei, William Wu-Shyong},
year={1994},
publisher={Addison-Wesley publication}
}
@article{zeiler2012adadelta,
title={ADADELTA: an adaptive learning rate method},
author={Zeiler, Matthew D},
journal={arXiv preprint arXiv:1212.5701},
year={2012}
}
@article{tieleman2012lecture,
title={Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude},
author={Tieleman, Tijmen and Hinton, Geoffrey},
journal={COURSERA: Neural Networks for Machine Learning},
volume={4},
pages={2},
year={2012}
}
@article{duchi2011adaptive,
title={Adaptive subgradient methods for online learning and stochastic optimization},
author={Duchi, John and Hazan, Elad and Singer, Yoram},
journal={JMLR},
year={2011},
}
@incollection{ramakrishna2014pose,
title={Pose machines: Articulated pose estimation via inference machines},
author={Ramakrishna, Varun and Munoz, Daniel and Hebert, Martial and Bagnell, James Andrew and Sheikh, Yaser},
booktitle={ECCV},
year={2014},
publisher={Springer}
}
@inproceedings{lin2015deeply,
title={Deeply learning the messages in message passing inference},
author={Lin, Guosheng and Shen, Chunhua and Reid, Ian and van den Hengel, Anton},
booktitle={NIPS},
pages={361--369},
year={2015}
}
@book{mohri2012foundations,
title={Foundations of machine learning},
author={Mohri, Mehryar and Rostamizadeh, Afshin and Talwalkar, Ameet},
year={2012},
publisher={MIT press}
}
@article{roweis1999unifying,
title={A unifying review of linear Gaussian models},
author={Roweis, Sam and Ghahramani, Zoubin},
journal={Neural computation},
volume={11},
number={2},
pages={305--345},
year={1999},
publisher={MIT Press}
}
@MISC{Bastien-Theano-2012,
author = {Bastien, Fr{\'{e}}d{\'{e}}ric and Lamblin, Pascal and Pascanu, Razvan and Bergstra, James and Goodfellow, Ian J. and Bergeron, Arnaud and Bouchard, Nicolas and Bengio, Yoshua},
title = {Theano: new features and speed improvements},
year = {2012},
howpublished = {Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop},
}
@inproceedings{belanger2015linear,
title={A Linear Dynamical System Model for Text},
author={Belanger, David and Kakade, Sham},
booktitle={ICML},
year={2015}
}
@article{ross2014reinforcement,
title={Reinforcement and imitation learning via interactive no-regret learning},
author={Ross, Stephane and Bagnell, J Andrew},
journal={arXiv preprint arXiv:1406.5979},
year={2014}
}
@inproceedings{bagnell2003covariant,
title={Covariant policy search},
author={Bagnell, J Andrew and Schneider, Jeff},
year={2003},
organization={IJCAI}
}
@inproceedings{schulman2015trust,
title={Trust Region Policy Optimization.},
author={Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan, Michael I and Moritz, Philipp},
booktitle={ICML},
pages={1889--1897},
year={2015}
}
@article{williams1992simple,
title={Simple statistical gradient-following algorithms for connectionist reinforcement learning},
author={Williams, Ronald J},
journal={Machine learning},
year={1992},
publisher={Springer}
}
@article{jaksch2010near,
title={Near-optimal regret bounds for reinforcement learning},
author={Jaksch, Thomas and Ortner, Ronald and Auer, Peter},
journal={JMLR},
year={2010}
}
@inproceedings{kakade2002approximately,
title={Approximately optimal approximate reinforcement learning},
author={Kakade, Sham and Langford, John},
booktitle={ICML},
year={2002}
}
@article{kakade2002natural,
title={A natural policy gradient},
author={Kakade, Sham},
journal={NIPS},
year={2002},
}
@inproceedings{chang2015learning,
title={Learning to Search Better than Your Teacher},
author={Chang, Kai-wei and Krishnamurthy, Akshay and Agarwal, Alekh and Daume, Hal and Langford, John},
booktitle={ICML},
year={2015}
}
@inproceedings{duan2016benchmarking,
title={Benchmarking deep reinforcement learning for continuous control},
author={Duan, Yan and Chen, Xi and Houthooft, Rein and Schulman, John and Abbeel, Pieter},
booktitle={ICML},
year={2016}
}
@article{duyckpredicting,
title={Predicting Structure in Handwritten Algebra Data From Low Level Features},
author={Duyck, James A and Gordon, Geoffrey J},
journal={Data Analysis Project Report, MLD, CMU},
year = {2015}
}
@article{chang2015learning_dependency,
title={Learning to search for dependencies},
author={Chang, Kai-Wei and He, He and Daum{\'e} III, Hal and Langford, John},
journal={arXiv preprint arXiv:1503.05615},
year={2015}
}
@inproceedings{bengio2015scheduled,
title={Scheduled sampling for sequence prediction with recurrent neural networks},
author={Bengio, Samy and Vinyals, Oriol and Jaitly, Navdeep and Shazeer, Noam},
booktitle={NIPS},
year={2015}
}
@article{kahn2016plato,
title={PLATO: Policy Learning using Adaptive Trajectory Optimization},
author={Kahn, Gregory and Zhang, Tianhao and Levine, Sergey and Abbeel, Pieter},
journal={arXiv preprint arXiv:1603.00622},
year={2016}
}
@inproceedings{ho2016generative,
title={Generative adversarial imitation learning},
author={Ho, Jonathan and Ermon, Stefano},
booktitle={NIPS},
year={2016}
}
@inproceedings{finn2016guided,
title={Guided cost learning: Deep inverse optimal control via policy optimization},
author={Finn, Chelsea and Levine, Sergey and Abbeel, Pieter},
booktitle={ICML},
year={2016}
}
@article{brockman2016openai,
title={OpenAI gym},
author={Brockman, Greg and Cheung, Vicki and Pettersson, Ludwig and Schneider, Jonas and Schulman, John and Tang, Jie and Zaremba, Wojciech},
journal={arXiv preprint arXiv:1606.01540},
year={2016}
}
@inproceedings{ho2016model,
title={Model-free imitation learning with policy optimization},
author={Ho, Jonathan and Gupta, Jayesh K and Ermon, Stefano},
booktitle={ICML},
year={2016}
}
@inproceedings{abbeel2004apprenticeship,
title={Apprenticeship learning via inverse reinforcement learning},
author={Abbeel, Pieter and Ng, Andrew Y},
booktitle={ICML},
pages={1},
year={2004},
organization={ACM}
}
@inproceedings{ziebart2008maximum,
title={Maximum Entropy Inverse Reinforcement Learning.},
author={Ziebart, Brian D and Maas, Andrew L and Bagnell, J Andrew and Dey, Anind K},
booktitle={AAAI},
year={2008},
}
@inproceedings{syed2008apprenticeship,
title={Apprenticeship learning using linear programming},
author={Syed, Umar and Bowling, Michael and Schapire, Robert E},
booktitle={ICML},
year={2008},
}
@article{greensmith2004variance,
title={Variance reduction techniques for gradient estimates in reinforcement learning},
author={Greensmith, Evan and Bartlett, Peter L and Baxter, Jonathan},
journal={JMLR},
year={2004}
}
@inproceedings{sutskever2014sequence,
title={Sequence to sequence learning with neural networks},
author={Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V},
booktitle={NIPS},
year={2014}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@article{shalev2012online,
title={Online learning and online convex optimization},
author={Shalev-Shwartz, Shai and others},
journal={Foundations and Trends{\textregistered} in Machine Learning},
year={2012},
}
@inproceedings{sun2016learning,
title={Learning to filter with predictive state inference machines},
author={Sun, Wen and Venkatraman, Arun and Boots, Byron and Bagnell, J Andrew},
booktitle={ICML},
year={2016}
}
%author={Silver, David and Huang, Aja and Maddison, Chris J and Guez, Arthur and Sifre, Laurent and Van Den Driessche, George and Schrittwieser, Julian and Antonoglou, Ioannis and Panneershelvam, Veda and Lanctot, Marc and others},
@article{silver2016mastering,
title={Mastering the game of Go with deep neural networks and tree search},
author={Silver, David and others},
journal={Nature},
year={2016},
}
%author={Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, Marc G and Graves, Alex and Riedmiller, Martin and Fidjeland, Andreas K and Ostrovski, Georg and others},
@article{mnih2015human,