forked from vincentherrmann/pytorch-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwavenet_training.py
553 lines (447 loc) · 21.7 KB
/
wavenet_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import torch
import torch.optim as optim
import time
from datetime import datetime
import librosa
import threading
import torch.nn.functional as F
from torch.autograd import Variable
from random import randint, shuffle, uniform
from logger import Logger
from wavenet_modules import *
def print_last_loss(opt):
print("loss: ", opt.losses[-1])
def print_last_validation_result(opt):
print("validation loss: ", opt.validation_results[-1])
class WaveNetOptimizer:
def __init__(self,
model,
data,
validation_segments=0,
examples_per_validation_segment=8,
optimizer=optim.Adam,
report_callback=print_last_loss,
report_interval=8,
validation_report_callback=print_last_validation_result,
logging_interval=64,
validation_interval=64,
snapshot_interval=256,
snapshot_file=None,
segments_per_chunk=16,
examples_per_segment=32):
self.model = model
self.data = data
self.data.epoch_finished_callback = self.new_epoch
self.learning_rate = 0.001
self.optimizer_type = optimizer
self.optimizer = optimizer(params=self.model.parameters(), lr=self.learning_rate)
if validation_segments > 0:
self.data.create_validation_set(segments=validation_segments,
examples_per_segment=examples_per_validation_segment)
self.report_callback = report_callback
self.report_interval = report_interval
self.validation_report_callback = validation_report_callback
self.validation_interval = validation_interval
self.logging_interval = logging_interval
self.snapshot_interval = snapshot_interval
self.snapshot_file = snapshot_file
self.logger = Logger('./logs')
self.i = 0 # current step
self.losses = []
self.step_times = []
self.loss_positions = []
self.validation_results = []
self.validation_result_positions = []
self.avg_loss = 0
self.avg_time = 0
self.current_epoch = -1
self.epochs = 1
self.segments_per_chunk = segments_per_chunk
self.examples_per_segment = examples_per_segment
self.new_epoch()
self.data.load_new_chunk()
self.data.use_new_chunk()
def new_epoch(self):
'''
Start a new epoch or end training
'''
self.current_epoch += 1
if self.current_epoch >= self.epochs:
print("training finished")
return
print("epoch ", self.current_epoch)
self.data.start_new_epoch(segments_per_chunk=self.segments_per_chunk,
examples_per_segment=self.examples_per_segment)
def validate_model(self, position, validation_m=16):
'''
Run model on validation set and report the result
:param validation_m: number of examples from the validation set in one minibatch
'''
self.model.eval()
avg_loss = 0
i = 0
while i < self.data.validation_index_count:
inputs = self.data.validation_inputs[i:(i + validation_m), :, :]
inputs = Variable(inputs, volatile=True)
targets = self.data.validation_targets[i:(i + validation_m), :]
targets = targets.view(targets.size(0) * targets.size(1))
targets = Variable(targets, volatile=True)
output = self.model(inputs)
loss = F.cross_entropy(output.squeeze(), targets).data[0]
avg_loss += loss
i += validation_m
avg_loss = avg_loss * validation_m / self.data.validation_index_count
self.validation_results.append(avg_loss)
self.validation_result_positions.append(position)
if self.validation_report_callback is not None:
self.validation_report_callback(self)
self.model.train()
def log_to_tensor_board(self):
# TensorBoard logging
# loss
self.logger.scalar_summary("loss", self.avg_loss, self.i)
# parameter histograms
for tag, value, in self.model.named_parameters():
tag = tag.replace('.', '/')
self.logger.histo_summary(tag, value.data.cpu().numpy(), self.i)
if value.grad is not None:
self.logger.histo_summary(tag + '/grad', value.grad.data.cpu().numpy(), self.i)
# normalized cross correlation
for tag, module in self.model.named_modules():
tag = tag.replace('.', '/')
if type(module) is Conv1dExtendable:
ncc = module.normalized_cross_correlation()
self.logger.histo_summary(tag + '/ncc', ncc.data.cpu().numpy(), self.i)
def log_normalized_cross_correlation(self):
print("cross correlations")
for name, module in self.model.named_modules():
if type(module) is Conv1dExtendable:
ncc = module.normalized_cross_correlation()
print(ncc)
def split_important_features(self, threshold):
splitted = False
for name, module in self.model.named_modules():
if module is self.model.end_conv:
#print("Can't split feature in end conv")
continue
if type(module) is Conv1dExtendable:
ncc = module.normalized_cross_correlation()
for feature_number, value in enumerate(ncc):
if abs(value.data[0]) > threshold:
print("in ", name, ", split feature number ", feature_number)
module.split_feature(feature_number=feature_number)
splitted = True
if splitted:
self.optimizer = self.optimizer_type(params=self.model.parameters(), lr=self.learning_rate)
def reset_training(self):
self.i = 0
self.losses = []
self.step_times = []
self.loss_positions = []
self.validation_results = []
self.validation_result_positions = []
self.avg_loss = 0
self.avg_time = 0
self.current_epoch = -1
self.new_epoch()
self.data.load_new_chunk()
self.data.use_new_chunk()
def train(self,
learning_rate=0.001,
minibatch_size=8,
epochs=100,
segments_per_chunk=16,
examples_per_segment=32):
'''
Train a Wavenet model
:param learning_rate: Learning rate of the optimizer
:param minibatch_size: Number of examples in one minibatch
:param epochs: Number of training epochs
:param segments_per_chunk: Number of segments from the training data that are simultaneously loaded into memory
:param examples_per_segment: The number of examples each of these segments contains
'''
self.learning_rate = learning_rate
self.optimizer.lr = learning_rate
self.epochs = epochs
if segments_per_chunk != self.segments_per_chunk | examples_per_segment != self.examples_per_segment:
self.segments_per_chunk = segments_per_chunk
self.examples_per_segment = examples_per_segment
self.new_epoch()
self.data.load_new_chunk()
self.data.use_new_chunk()
self.model.train() # set to train mode
# train loop
while True:
tic = time.time()
self.optimizer.zero_grad()
# get data
inputs, targets = self.data.get_minibatch(minibatch_size)
targets = targets.view(targets.size(0) * targets.size(1))
inputs = Variable(inputs)
targets = Variable(targets)
output = self.model(inputs)
loss = F.cross_entropy(output.squeeze(), targets)
loss.backward()
loss = loss.data[0]
# if loss > previous_loss * 3:
# print("unexpected high loss: ", loss)
# print("at minibatch ", minibatch_indices, " / ", data.data_length)
self.optimizer.step()
step_time = time.time() - tic
self.avg_time += step_time
self.avg_loss += loss
self.i += 1
# train feedback
if self.i % self.report_interval == 0:
print("loss: ", loss)
#if self.report_callback != None:
# self.report_callback(self)
if self.i % self.logging_interval == 0:
self.avg_loss /= self.logging_interval
self.avg_time /= self.logging_interval
previous_loss = self.avg_loss
self.losses.append(self.avg_loss)
self.step_times.append(self.avg_time)
self.loss_positions.append(self.i)
print("log to tensorBoard")
self.log_to_tensor_board()
self.split_important_features(threshold=0.2)
#self.log_normalized_cross_correlation()
self.avg_loss = 0
self.avg_time = 0
# run on validation set
if self.i % self.validation_interval == 0:
self.validate_model(self.i)
print("average step time: ", self.step_times[-1])
# print("validation loss: ", avg_loss)
# snapshot
if self.i % self.snapshot_interval == 0:
if self.snapshot_file != None:
torch.save(self.model.state_dict(), self.snapshot_file)
date = str(datetime.now())
print(date, ": snapshot saved to ", self.snapshot_file)
class AudioFileLoader:
def __init__(self,
paths,
classes,
receptive_field,
target_length,
dtype=torch.FloatTensor,
ltype=torch.LongTensor,
sampling_rate=11025,
epoch_finished_callback=None):
self.paths = paths
self.sampling_rate = sampling_rate
self.current_file = 0
self.current_offset = 0
self.classes = classes
self.receptive_field = receptive_field
self.target_length = target_length
self.dtype = dtype
self.ltype = ltype
self.epoch_finished_callback = epoch_finished_callback
# data that can be loaded in a background thread
self.loaded_data = []
self.load_thread = None #threading.Thread(target=self.load_new_chunk, args=[])
# training data
self.inputs = []
self.targets = []
self.training_indices = []
self.training_index_count = 0
self.training_segment_duration = 0.
self.current_training_index = 0
self.segments_per_chunk = 0
self.examples_per_segment = 0
self.segment_positions = np.array(0)
self.chunk_position = 0
self.additional_receptive_field = self.receptive_field - self.target_length + 1 # negative offset to accommodate for the receptive field
# validation data
self.validation_inputs = np.array(0)
self.validation_targets = np.array(0)
self.validation_index_count = 0
self.validation_positions = []
self.validation_segment_length = 0.
# calculate training data duration
self.data_length = 0
self.start_positions = [0]
for path in paths:
d = librosa.get_duration(filename=path) * self.sampling_rate
self.data_length += d
self.start_positions.append(self.data_length)
print("total duration of training data: ", self.data_length, " samples")
# self.start_new_epoch()
def quantize_data(self, data):
# mu-law enconding
mu_x = mu_law_enconding(data, self.classes)
# quantization
bins = np.linspace(-1, 1, self.classes)
quantized = np.digitize(mu_x, bins) - 1
inputs = bins[quantized[0:-1]]
targets = quantized[1::]
return inputs, targets
def create_validation_set(self, segments=32, examples_per_segment=8):
'''
Create validation set from data that will be excluded from all training data
'''
self.validation_index_count = segments * examples_per_segment
self.validation_inputs = self.dtype(self.validation_index_count, 1, self.receptive_field).zero_()
self.validation_targets = self.ltype(self.validation_index_count, self.target_length).zero_()
self.validation_segment_length = self.target_length * examples_per_segment
print("The validation set has a total duration of ", segments * self.validation_segment_length, " s")
available_segments = int(self.data_length // self.validation_segment_length) - 1 # number of segments that can be chosen from
validation_offset = int(uniform(0, self.validation_segment_length)) # some random offset
positions = np.random.choice(available_segments, size=segments, replace=False)
self.validation_positions = positions * self.validation_segment_length + validation_offset
duration = self.validation_segment_length + self.additional_receptive_field
for s in range(segments):
position = self.validation_positions[s] - self.additional_receptive_field
d = self.load_segment(segment_position=position,
duration=duration)
i, t = self.quantize_data(d)
i = self.dtype(i)
t_temp = torch.from_numpy(t)
if self.ltype.is_cuda:
t_temp = t_temp.cuda()
t = self.ltype(t_temp)
for m in range(examples_per_segment):
example_index = s * examples_per_segment + m
position = m*self.target_length + self.receptive_field
if position > i.size(0):
print("index ", position, " is not avialable in a tensor of size ", i.size(0))
self.validation_inputs[example_index, :, :] = i[position - self.receptive_field:position]
self.validation_targets[example_index, :] = t[position - self.target_length:position]
def start_new_epoch(self, segments_per_chunk, examples_per_segment):
# wait for loading to finish
# if self.load_thread != None:
# if self.load_thread.is_alive():
# self.load_thread.join()
#print("\n start new epoch")
self.segments_per_chunk = segments_per_chunk
self.examples_per_segment = examples_per_segment
self.training_index_count = segments_per_chunk * examples_per_segment
self.training_segment_duration = self.target_length * examples_per_segment
training_offset = uniform(0, self.training_segment_duration)
available_segments = int(self.data_length // self.training_segment_duration) - 1
if(available_segments < segments_per_chunk):
print("There are not enough segments available in the training set to produce one chunk")
self.segment_positions = np.random.permutation(available_segments) * self.training_segment_duration + training_offset
self.chunk_position = 0
#print("with positions: ", self.segment_positions)
#self.load_new_chunk()
#self.use_new_chunk()
def load_new_chunk(self):
tic = time.time()
#print("load new chunk with start segment index ", self.chunk_position)
self.loaded_data = []
current_chunk_position = self.chunk_position
while len(self.loaded_data) < self.segments_per_chunk:
if current_chunk_position >= len(self.segment_positions):
#print("epoch finished")
if self.epoch_finished_callback != None:
self.epoch_finished_callback()
current_chunk_position = self.chunk_position
#break
segment_position = self.segment_positions[current_chunk_position]
# check if this segment overlaps with any validation segment,
# if yes, then block it
segment_is_blocked = False
for validation_position in self.validation_positions:
train_seg_end = segment_position + self.training_segment_duration
validation_seg_end = validation_position + self.validation_segment_length
if (train_seg_end > validation_position) & (segment_position < validation_seg_end):
#print("block segment at position ", validation_position)
segment_is_blocked = True
break
current_chunk_position += 1
if segment_is_blocked:
continue
duration = self.training_segment_duration + self.additional_receptive_field
new_data = self.load_segment(segment_position, duration)
i, t = self.quantize_data(new_data)
self.loaded_data.append((i, t))
#self.training_index_count = len(self.loaded_data) * self.examples_per_segment
self.chunk_position = current_chunk_position
#print("there are ", len(self.loaded_data), " segments in the newly loaded chunk")
toc = time.time()
if toc-tic > 60:
print("loading this chunk took ", toc-tic, " seconds")
if len(self.loaded_data) == 0:
print("Loaded data has length 0?!")
def use_new_chunk(self):
#print("use loaded chunk with ", len(self.loaded_data), "segments")
# wait for loading to finish
if self.load_thread != None:
if self.load_thread.is_alive():
print("Loading the data is slowing the training process down. Maybe you should use less segments per chunk or uncompressed audio files.")
self.load_thread.join()
if len(self.loaded_data) == 0:
print("no data loaded?!")
if self.training_index_count > self.examples_per_segment * self.segments_per_chunk:
print("To many training indices ?!")
self.sample_indices = np.random.permutation(self.training_index_count)
# TODO sometimes the training index count is way to high, why???
#print("last training index count: ", self.training_index_count)
if(len(self.sample_indices) > self.segments_per_chunk * self.examples_per_segment):
print("training index count too high")
self.current_training_index = 0
if len(self.inputs) >= self.segments_per_chunk:
self.inputs = []
self.targets = []
for inputs, targets in self.loaded_data:
self.inputs.append(self.dtype(inputs))
t_temp = torch.from_numpy(targets)
if self.ltype.is_cuda:
t_temp = t_temp.cuda()
self.targets.append(self.ltype(t_temp))
#self.load_new_chunk()
self.load_thread = threading.Thread(target=self.load_new_chunk)
self.load_thread.start()
def get_minibatch(self, minibatch_size):
#print(" load minibatch")
input = self.dtype(minibatch_size, 1, self.receptive_field).zero_()
target = self.ltype(minibatch_size, self.target_length).zero_()
if self.training_index_count < minibatch_size:
print("not enough data for one minibatch in chunk. You should probably load bigger chunks into memory.")
for i in range(minibatch_size):
index = self.sample_indices[self.current_training_index]
segment = index // self.examples_per_segment
position = (index % self.examples_per_segment) * self.target_length + self.receptive_field
if position > self.inputs[segment].size(0):
print("index ", position, " is not available in a tensor of size ", self.inputs[segment].size(0))
sample_length = min(position, self.receptive_field)
input[i, :, -sample_length:] = self.inputs[segment][(position - sample_length):position]
sample_length = min(position, self.target_length)
target[i, -sample_length:] = self.targets[segment][(position - sample_length):position]
self.current_training_index += 1
if self.current_training_index >= self.training_index_count:
#print("use new chunk")
self.use_new_chunk()
return input, target
def load_segment(self, segment_position, duration):
# find the right file
duration_in_s = duration / self.sampling_rate
file_index = 0
while self.start_positions[file_index+1] <= segment_position:
file_index += 1
if file_index+1 >= len(self.start_positions):
print("position ", segment_position, "is not available, fill with ", duration, " zeros \n (this should not have happened!!!)")
zeros = np.zeros((duration))
return zeros
file_path = self.paths[file_index]
# load from file
offset = (segment_position - self.start_positions[file_index]) / self.sampling_rate
new_data, sr = librosa.load(path=file_path,
sr=self.sampling_rate,
mono=True,
offset=offset,
duration=duration_in_s)
# if the file was not long enough, recursively call this function on the next file to get the remaining duration
new_loaded_duration = len(new_data)
if new_loaded_duration < duration:
new_position = self.start_positions[file_index+1]
new_duration = duration - new_loaded_duration
additional_data = self.load_segment(new_position, new_duration)
new_data = np.append(new_data, additional_data)
if len(new_data) < duration:
print("loaded segment is to short: \nexpected ", duration, "samples, but got", len(new_data))
return new_data