-
Notifications
You must be signed in to change notification settings - Fork 17
/
train.py
79 lines (64 loc) · 3.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
www.github.com/kyubyong/neural_japanese_transliterator
'''
from __future__ import print_function
import tensorflow as tf
from tqdm import tqdm
from data_load import get_batch, load_vocab, load_train_data
from hyperparams import Hyperparams as hp
from utils import shift_by_one
from modules import embed
from networks import encode, decode
from data_load import *
roma2idx, idx2roma, surf2idx, idx2surf = load_vocab()
class Graph:
def __init__(self, is_training=True):
self.graph = tf.Graph()
with self.graph.as_default():
if is_training:
self.x, self.y, self.num_batch = get_batch()
else: # Evaluation
self.x = tf.placeholder(tf.int32, shape=(None, hp.max_len,))
self.y = tf.placeholder(tf.int32, shape=(None, hp.max_len,))
# Character Embedding for x
self.enc = embed(self.x, len(roma2idx), hp.embed_size, scope="emb_x")
# Encoder
self.memory = encode(self.enc, is_training=is_training)
# Character Embedding for decoder_inputs
self.decoder_inputs = shift_by_one(self.y)
self.dec = embed(self.decoder_inputs, len(surf2idx), hp.embed_size, scope="emb_decoder_inputs")
# Decoder
self.outputs = decode(self.dec, self.memory, len(surf2idx), is_training=is_training) # (N, T', hp.n_mels*hp.r)
self.logprobs = tf.log(tf.nn.softmax(self.outputs)+1e-10)
self.preds = tf.arg_max(self.outputs, dimension=-1)
if is_training:
self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.y, logits=self.outputs)
self.istarget = tf.to_float(tf.not_equal(self.y, tf.zeros_like(self.y))) # masking
self.mean_loss = tf.reduce_sum(self.loss * self.istarget) / (tf.reduce_sum(self.istarget))
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer(learning_rate=hp.lr)
self.train_op = self.optimizer.minimize(self.mean_loss, global_step=self.global_step)
# Summary
tf.summary.scalar('mean_loss', self.mean_loss)
self.merged = tf.summary.merge_all()
def main():
g = Graph(); print("Training Graph loaded")
with g.graph.as_default():
# Training
sv = tf.train.Supervisor(logdir=hp.logdir,
save_model_secs=0)
with sv.managed_session() as sess:
for epoch in range(1, hp.num_epochs+1):
if sv.should_stop(): break
for step in tqdm(range(g.num_batch), total=g.num_batch, ncols=70, leave=False, unit='b'):
sess.run(g.train_op)
# Write checkpoint files at every epoch
gs = sess.run(g.global_step)
sv.saver.save(sess, hp.logdir + '/model_epoch_%02d_gs_%d' % (epoch, gs))
if __name__ == '__main__':
main()
print("Done")