forked from floli/PyRBF
-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo_NN_PUM_Blocks.py
211 lines (161 loc) · 5.89 KB
/
demo_NN_PUM_Blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
""" Generates data to show the effect of rescaling. Low density basisfunctions used. """
""" Creates a local RBF around each nearest neighbour point on input mesh """
import pandas
from rbf import *
from rbf_2d import *
import basisfunctions, testfunctions
import matplotlib.pyplot as plt
import time
import mesh
import math
from scipy import spatial
class Block:
def __str__(self):
return type(self).__name_
def __init__(self, pointsInBlock):
print("pointsInBlock: ", pointsInBlock)
def __call__(self):
print("pointsInBlock again: ", pointsInBlock)
return pointsInBlock
start = time.time()
nPoints = 100
nPointsOut = 100
print("Number of points on input mesh: ",nPoints)
print("Number of points on output mesh: ",nPointsOut)
#in_mesh = np.linspace((1,2),(10,20),nPoints)
in_mesh = np.random.random((nPoints,2))
out_mesh = np.random.random((nPointsOut,2))
tree = spatial.KDTree(list(zip(in_mesh[:,0],in_mesh[:,1])))
plt.scatter(in_mesh[:,0], in_mesh[:,1], label = "In Mesh",s=2)
plt.scatter(out_mesh[:,0], out_mesh[:,1], label = "Out Mesh")
plt.show()
nBlocksX = 5
nBlocksY = 5
pointsInBlock = []
nearest_neighbors = 0
for i in range(0,nPoints):
if in_mesh[i,0] > 0.2 and in_mesh[i,0] < 0.4:
if in_mesh[i,1] > 0.2 and in_mesh[i,1] < 0.4:
pointsInBlock.append(i)
#print("Points: ", pointsInBlock)
nnAmount = 5
for j in range(0,int(len(pointsInBlock))):
i = pointsInBlock[j]
queryPt = (in_mesh[i,0],in_mesh[i,1])
nnArray = tree.query(queryPt,nnAmount)
print(nnArray)
if nnArray[0][1] > nearest_neighbors:
nearest_neighbors = nnArray[0][1]
#print(nnArray[1][j])
for i in range(0,nnAmount):
if nnArray[1][i] in pointsInBlock:
nnAmount = nnAmount
else:
pointsInBlock.append(nnArray[1][i])
#print("Points: ", pointsInBlock)
setOfBlocks = []
setOfBlocks.append(Block(pointsInBlock))
myPoints = setOfBlocks[0]
print("myPoints: ", myPoints)
func = lambda x,y: np.sin(2*x)+(0.0000001*y)
in_vals = func(in_mesh[:,0],in_mesh[:,1])
shape_parameter = 4.55228/(5*nearest_neighbors)
bf = basisfunctions.Gaussian(shape_parameter)
local_mesh = np.random.random((int(len(pointsInBlock)),2))
for i in range(0,int(len(pointsInBlock))):
local_mesh[i,0] = in_mesh[pointsInBlock[i],0]
local_mesh[i,1] = in_mesh[pointsInBlock[i],1]
local_vals = func(local_mesh[:,0],local_mesh[:,1])
print(local_mesh)
error_LOOCV = LOOCV(bf, local_mesh, local_vals, rescale = False)
errors = error_LOOCV()
print("LOOCV - Average Error: ", np.average(errors), " - and max error: ", max(errors))
"""
for i in range(0,1): #This runs one block
nearest_neighbors = []
shape_params = []
for j in range(0,nPoints):
queryPt = (in_mesh[j,0],in_mesh[j,1])
nnArray = tree.query(queryPt,2)
#print(nnArray[0][1])
nearest_neighbors.append(nnArray[0][1])
shape_params.append(0)
#print("nearest_nighbors: ",nearest_neighbors)
maxNN = max(nearest_neighbors)
func = lambda x,y: np.sin(2*x)+(0.0000001*y)
one_func = lambda x: np.ones_like(x)
in_vals = func(in_mesh[:,0],in_mesh[:,1])
#print(tree.query(pts))
#print("in_mesh: ", in_mesh)
for k in range(5,6):
for j in range(0,nPoints):
shape_params[j]=4.55228/(k*maxNN)
#shape_params[j]=4.55228/(i*nearest_neighbors[j])
#print("shape_params: ", shape_params)
#mesh_size = 1/math.sqrt(nPoints)
#print("mesh_size: ",mesh_size)
#shape_parameter = 4.55228/((5)*mesh_size)
#print("shape_parameter: ",shape_parameter)
bf = basisfunctions.Gaussian(list(shape_params))
#print("BF: ", bf)
#func = lambda x: (x-0.1)**2 + 1
#in_meshChange = [0, 0.02, 0.03, 0.1,0.23,0.25,0.52,0.83,0.9,0.95,1]
#for j in range(0,11):
# in_mesh[j] = in_meshChange[j]
#print(in_mesh)
#plot_mesh = np.random.random((nPoints,2))
#print(in_vals)
# evaluatine_vals = func(evaluate_mesh)
# basis_vals = func(basis_mesh)
#interp = NoneConsistent(bf, in_mesh, in_vals, rescale = False)
error_LOOCV = LOOCV(bf, in_mesh, in_vals, rescale = False)
errors = error_LOOCV()
#print("Error with i = ", i, ": ", errors)
print("LOOCV - Max Error with k = ", k, ": ", np.average(errors), " - and max error: ", max(errors))
#error_LOOCVSVD = LOOCVSVD(bf, in_mesh, in_vals, rescale = False)
#errorsSVD = error_LOOCVSVD()
#print("Error SVD: ", max(errorsSVD))
#print("Error Difference: ", errors - errorsSVD)
#end = time.time()
#print("Elapsed time: ", end - start)
#resc_interp = NoneConsistent(bf, in_mesh, in_vals, rescale = True)
#one_interp = NoneConsistent(bf, in_mesh, one_func(in_mesh), rescale = False)
'''
plt.scatter(in_mesh[:,0], in_mesh[:,1], label = "In Mesh")
plt.scatter(plot_mesh[:,0], plot_mesh[:,1], label = "Out Mesh")
#plt.legend()
#plt.show()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(in_mesh[:,0],in_mesh[:,1], in_vals, c='r', marker='o')
ax.set_xlabel('X coordinate')
ax.set_ylabel('Y ycoordinate')
ax.set_zlabel('Magnitude')
#plt.show()
'''
#fig = plt.figure()
#ax = Axes3D(fig)
#plt.scatter(in_mesh[:,0],in_mesh[:,1], errors, c = 'b', marker='o')
#plt.plot(evaluate_mesh, interp(evaluate_mesh), "--", label = "Interpolant $S_f$")
#plt.plot(evaluate_mesh, evaluate_vals, "--", label = "Interpolant $S_r$ of $g(x) = 1$")
#plt.plot(evaluate_mesh, evaluate_vals - interp(evaluate_mesh), "--", label = "Error on selected points")
#plt.tight_layout()
#plt.plot(in_mesh, in_vals, label = "Rescaled Interpolant")
#fig = plt.figure()
#ax = Axes3D(fig)
#surf = ax.plot_trisurf(in_mesh[:,0], in_mesh[:,1], in_vals)
#fig.colorbar(surf, shrink=0.5, aspect=5)
#plt.savefig('testSurrogate.pdf')
#plt.show()
#fig = plt.figure()
#ax = fig.add_subplot(111, projection='3d')
#ax.scatter(in_mesh[:,0],in_mesh[:,1], errors, c='r', marker='o')
#ax.set_xlabel('X coordinate')
#ax.set_ylabel('Y ycoordinate')
#ax.set_zlabel('Error Magnitude')
#plt.show()
#rint("RMSE no rescale =", interp.RMSE(func, plot_mesh))
#print("RMSE rescaled =", resc_interp.RMSE(func, plot_mesh))
end = time.time()
print("Elapsed time: ", end - start)
"""