-
Notifications
You must be signed in to change notification settings - Fork 6
/
compress_blackgen.py
387 lines (314 loc) · 12.1 KB
/
compress_blackgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
"""
Compress the video through gradient-based optimization.
"""
import argparse
import gc
import importlib
import logging
import time
from pathlib import Path
import coloredlogs
import enlighten
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import io
from dnn.dnn_factory import DNN_Factory
from utilities.bbox_utils import center_size
from utilities.loss_utils import focal_loss as get_loss
from utilities.mask_utils import *
from utilities.results_utils import read_ground_truth, read_results
from utilities.timer import Timer
from utilities.video_utils import get_qp_from_name, read_videos, write_video
from utilities.visualize_utils import (
visualize_dist_by_summarywriter,
visualize_heat_by_summarywriter,
)
thresh_list = [0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8]
sns.set()
def main(args):
gc.enable()
# initialize
logger = logging.getLogger("blackgen")
logger.addHandler(logging.FileHandler("blackgen.log"))
torch.set_default_tensor_type(torch.FloatTensor)
# read the video frames (will use the largest video as ground truth)
videos, bws, video_names = read_videos(args.inputs, logger, sort=True)
videos = videos
bws = [0, 1]
qps = [get_qp_from_name(video_name) for video_name in video_names]
# construct applications
app = DNN_Factory().get_model(args.app)
maskgen_spec = importlib.util.spec_from_file_location(
"maskgen", args.maskgen_file
)
maskgen = importlib.util.module_from_spec(maskgen_spec)
maskgen_spec.loader.exec_module(maskgen)
mask_generator = maskgen.FCN()
mask_generator.load(args.path)
# mask_generator.eval()
mask_generator.cuda()
# construct the mask
mask_shape = [
len(videos[-1]),
1,
720 // args.tile_size,
1280 // args.tile_size,
]
mask = torch.ones(mask_shape).float()
# construct the writer for writing the result
writer = SummaryWriter(f"runs/{args.app}/{args.output}")
for temp in range(1):
logger.info(f"Processing application")
progress_bar = enlighten.get_manager().counter(
total=len(videos[-1]), desc=f"{app.name}", unit="frames"
)
# application.cuda()
losses = []
f1s = []
for fid, (video_slices, mask_slice) in enumerate(
zip(zip(*videos), mask.split(1))
):
progress_bar.update()
lq_image, hq_image = video_slices[0], video_slices[1]
# lq_image = T.ToTensor()(Image.open('youtube_videos/train_pngs_qp_34/%05d.png' % (fid+offset2)))[None, :, :, :]
# construct hybrid image
with torch.no_grad():
# gt_result = application.inference(hq_image.cuda(), detach=True)[0]
# _, _, boxes, _ = application.filter_results(
# gt_result, args.confidence_threshold
# )
# boxes = center_size(boxes)
# size1 = boxes[:, 2] * boxes[:, 3]
# sum1s.append(size1.sum())
# boxes[:, 2:] = boxes[:, 2:] + 7 * args.tile_size
# size2 = boxes[:, 2] * boxes[:, 3]
# sum2s.append(size2.sum())
# # ratios.append(size2.sum() / size1.sum())
# mask_slice[:, :, :, :] = generate_mask_from_regions(
# mask_slice, boxes, 0, args.tile_size
# )
# mask_gen = mask_generator(
# torch.cat([hq_image, hq_image - lq_image], dim=1).cuda()
# )
hq_image = hq_image.cuda()
# mask_generator = mask_generator.cpu()
# with Timer("maskgen", logger):
mask_gen = mask_generator(hq_image)
# losses.append(get_loss(mask_gen, ground_truth_mask[fid]))
mask_gen = mask_gen.softmax(dim=1)[:, 1:2, :, :]
# mask_lb = dilate_binarize(mask_gen, args.bound, args.conv_size)
# mask_ub = dilate_binarize(mask_gen, args.upper_bound, args.conv_size)
mask_slice[:, :, :, :] = mask_gen
# mask_slice[:, :, :, :] = torch.where(mask_gen > 0.5, torch.ones_like(mask_gen), torch.zeros_like(mask_gen))
# visualization
if fid % args.visualize_step_size in [0, 1, 2]:
image = T.ToPILImage()(video_slices[-1][0, :, :, :])
mask_slice = mask_slice.detach().cpu()
writer.add_image("raw_frame", video_slices[-1][0, :, :, :], fid)
visualize_heat_by_summarywriter(
image, mask_slice, "inferred_saliency", writer, fid, args,
)
visualize_dist_by_summarywriter(
mask_slice, "saliency_dist", writer, fid,
)
mask_slice = sum(
[(mask_slice > thresh).float() for thresh in thresh_list]
)
visualize_heat_by_summarywriter(
image, mask_slice, "binarized_saliency", writer, fid, args,
)
logger.info("In video %s", args.output)
logger.info("The average loss is %.3f" % torch.tensor(losses).mean())
# application.cpu()
mask.requires_grad = False
from tqdm import tqdm
for mask_slice in tqdm(mask.split(args.smooth_frames)):
num = mask_slice.shape[0]
# mask_slice[:, :, :, :] = (
# mask_slice[0:1, :, :, :]
# + mask_slice[num // 2 : num // 2 + 1, :, :, :]
# + mask_slice[num - 1 : num, :, :, :]
# ) / 3
mask_slice[:, :, :, :] = mask_slice.mean(dim=0, keepdim=True)
# if args.bound is not None:
# mask = dilate_binarize(mask, args.bound, args.conv_size, cuda=False)
# else:
# assert args.perc is not None
# mask = (mask > percentile(mask, args.perc)).float()
# mask = dilate_binarize(mask, 0.5, args.conv_size, cuda=False)
if args.bound is not None:
mask = (mask > args.bound).float()
else:
mask = (mask > percentile(mask, args.perc)).float()
logger.info("logging raw quality assignment...")
for fid, (video_slices, mask_slice) in enumerate(
zip(zip(*videos), mask.split(1))
):
if fid % args.visualize_step_size in [0, 1, 2]:
image = T.ToPILImage()(video_slices[-1][0, :, :, :])
visualize_heat_by_summarywriter(
image,
mask_slice.cpu().detach().float(),
"raw_quality_assignment",
writer,
fid,
args,
)
mask = dilate_binarize(mask, 0.5, args.conv_size, cuda=False)
mask = postprocess_mask(mask)
# logger.info("logging actual quality assignment...")
# for fid, (video_slices, mask_slice) in enumerate(
# tqdm(zip(zip(*videos), mask.split(1)))
# ):
# if fid % args.visualize_step_size == 0:
# image = T.ToPILImage()(video_slices[-1][0, :, :, :])
# visualize_heat_by_summarywriter(
# image,
# mask_slice.cpu().detach().float(),
# "quality_assignment",
# writer,
# fid,
# args,
# )
# for i in range(len(mask)):
# for j in range(1, 31):
# if i + j >= len(mask):
# continue
# maski = mask[i : i + 1, :, :, :]
# maskj = mask[i + j : i + j + 1, :, :, :]
# iou = ((maski == 1) & (maskj == 1)).sum() / (
# (maski == 1) | (maskj == 1)
# ).sum()
# logger.info("Dist: %d, IoU: %.3f", j, iou.item())
# if args.bound is not None:
# write_black_bkgd_video_smoothed_continuous(
# mask, args, args.qp, logger, writer=writer, tag="hq"
# )
# else:
# perc_to_crf = {99: 0.5, 97: 1, 95: 1.5, 90: 2}
# write_black_bkgd_video_smoothed_continuous_crf(
# mask, args, perc_to_crf[args.perc], logger, writer=writer, tag="hq"
# )
assert args.hq != -1
if args.lq != -1:
assert args.hq < args.lq
assert "dual" in args.output
orig_output = str(args.output)
args.output = args.output + f".qp{args.hq}.mp4"
write_black_bkgd_video_smoothed_continuous(
mask, args, args.hq, logger, writer=writer, tag="hq"
)
mask = 1 - mask
mask = dilate_binarize(mask, 0.5, 3, cuda=False)
args.output = orig_output + f".base.mp4"
write_black_bkgd_video_smoothed_continuous(
mask, args, args.lq, logger, writer=writer, tag="lq"
)
else:
assert "dual" not in args.output
write_black_bkgd_video_smoothed_continuous(
mask, args, args.hq, logger, writer=writer, tag="hq"
)
# masked_video = generate_masked_video(mask, videos, bws, args)
# write_video(masked_video, args.output, logger)
if __name__ == "__main__":
# set the format of the logger
coloredlogs.install(
fmt="%(asctime)s [%(levelname)s] %(name)s:%(funcName)s[%(lineno)s] -- %(message)s",
level="INFO",
)
parser = argparse.ArgumentParser()
parser.add_argument(
"--app", type=str, help="The name of the model.", required=True,
)
parser.add_argument(
"-i",
"--inputs",
nargs="+",
help="The video file names. The largest video file will be the ground truth.",
required=True,
)
parser.add_argument(
"-g",
"--ground_truth",
help="The video file names. The largest video file will be the ground truth.",
type=str,
required=True,
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument(
"-s",
"--source",
type=str,
help="The original video source.",
required=True,
)
# parser.add_argument('-g', '--ground_truth', type=str, help='The ground truth results.', required=True)
parser.add_argument(
"-o", "--output", type=str, help="The output name.", required=True
)
parser.add_argument(
"--confidence_threshold",
type=float,
help="The confidence score threshold for calculating accuracy.",
default=0.7,
)
parser.add_argument(
"--iou_threshold",
type=float,
help="The IoU threshold for calculating accuracy in object detection.",
default=0.5,
)
parser.add_argument(
"--tile_size", type=int, help="The tile size of the mask.", default=8
)
parser.add_argument(
"--maskgen_file",
type=str,
help="The file that defines the neural network.",
required=True,
)
parser.add_argument(
"-p",
"--path",
type=str,
help="The path of pth file that stores the generator parameters.",
required=True,
)
# parser.add_argument(
# "--upper_bound", type=float, help="The upper bound for the mask", required=True,
# )
# parser.add_argument(
# "--lower_bound", type=float, help="The lower bound for the mask", required=True,
# )
action = parser.add_mutually_exclusive_group(required=True)
action.add_argument(
"--bound", type=float, help="The lower bound for the mask",
)
action.add_argument(
"--perc", type=float, help="The percentage of modules to be encoded."
)
parser.add_argument(
"--smooth_frames",
type=int,
help="Proposing one single mask for smooth_frames many frames",
default=30,
)
parser.add_argument(
"--visualize_step_size",
type=int,
help="Proposing one single mask for smooth_frames many frames",
default=100,
)
parser.add_argument("--conv_size", type=int, default=1)
parser.add_argument("--hq", type=int, default=-1)
parser.add_argument("--lq", type=int, default=-1)
# parser.add_argument('--mask', type=str,
# help='The path of the ground truth video, for loss calculation purpose.', required=True)
args = parser.parse_args()
main(args)