We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
尊敬的作者您好,在复现你的代码的过程中,我注意到即使在无cycle的条件下也需要用判别器去判别生成器生成的效果,但是我不太清除是否需要预训练判别器使其产生判别真实图像与生成图像得能力?代码文件CycTrainer.py中230行的adv_loss = self.config['Adv_lamda'] * self.MSE_loss(pred_fake0, self.target_real)此处用到判别器。
The text was updated successfully, but these errors were encountered:
不需要预训练,辨别器和生成器一起训练即可,230行的代码部分就是RegGAN的训练,无cycle但有Registration。
Sorry, something went wrong.
亲爱的作者您好,还有一个问题想请教一下您,在nicegan的NC+R模式中,您是如何实现共享判别器和生成器的encoder的呢?感激不尽!
作者您好,关于输入图像格式有几个问题想要请教。1.我的原始图像格式是2D的.jpg后缀,我想要训练自己的数据集,也需要先进行预处理将.jpg转为.npy格式吗?2.另外,我想要在无cycle的条件下Registration,是否也需要对输入数据先进行转格式的预处理操作?
No branches or pull requests
尊敬的作者您好,在复现你的代码的过程中,我注意到即使在无cycle的条件下也需要用判别器去判别生成器生成的效果,但是我不太清除是否需要预训练判别器使其产生判别真实图像与生成图像得能力?代码文件CycTrainer.py中230行的adv_loss = self.config['Adv_lamda'] * self.MSE_loss(pred_fake0, self.target_real)此处用到判别器。
The text was updated successfully, but these errors were encountered: