-
Notifications
You must be signed in to change notification settings - Fork 183
/
d884d4cb-0656-460d-9454-897eb9789f2a.txt
2165 lines (2092 loc) · 134 KB
/
d884d4cb-0656-460d-9454-897eb9789f2a.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:12:53 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 101W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 117W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31559ms step_avg:nanms
step:2/1530 train_loss:10.0763 train_time:31669ms step_avg:nanms
step:3/1530 train_loss:8.3680 train_time:31828ms step_avg:nanms
step:4/1530 train_loss:7.5816 train_time:31989ms step_avg:nanms
step:5/1530 train_loss:7.4791 train_time:32148ms step_avg:nanms
step:6/1530 train_loss:6.9782 train_time:32309ms step_avg:nanms
step:7/1530 train_loss:7.1956 train_time:32468ms step_avg:nanms
step:8/1530 train_loss:6.7256 train_time:32628ms step_avg:nanms
step:9/1530 train_loss:6.6172 train_time:32789ms step_avg:nanms
step:10/1530 train_loss:6.5017 train_time:32949ms step_avg:nanms
step:11/1530 train_loss:6.4595 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3673 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2577 train_time:434ms step_avg:144.80ms
step:14/1530 train_loss:6.1845 train_time:595ms step_avg:148.70ms
step:15/1530 train_loss:6.1611 train_time:755ms step_avg:150.92ms
step:16/1530 train_loss:6.0937 train_time:917ms step_avg:152.83ms
step:17/1530 train_loss:6.1658 train_time:1077ms step_avg:153.83ms
step:18/1530 train_loss:5.9578 train_time:1237ms step_avg:154.56ms
step:19/1530 train_loss:6.0150 train_time:1396ms step_avg:155.11ms
step:20/1530 train_loss:5.6618 train_time:1556ms step_avg:155.62ms
step:21/1530 train_loss:5.9472 train_time:1717ms step_avg:156.13ms
step:22/1530 train_loss:6.1708 train_time:1877ms step_avg:156.38ms
step:23/1530 train_loss:5.8526 train_time:2037ms step_avg:156.71ms
step:24/1530 train_loss:6.0101 train_time:2197ms step_avg:156.96ms
step:25/1530 train_loss:5.6987 train_time:2358ms step_avg:157.18ms
step:26/1530 train_loss:5.5995 train_time:2517ms step_avg:157.31ms
step:27/1530 train_loss:5.8092 train_time:2677ms step_avg:157.49ms
step:28/1530 train_loss:5.3965 train_time:2837ms step_avg:157.63ms
step:29/1530 train_loss:5.6752 train_time:2997ms step_avg:157.75ms
step:30/1530 train_loss:5.4752 train_time:3159ms step_avg:157.93ms
step:31/1530 train_loss:5.4391 train_time:3320ms step_avg:158.11ms
step:32/1530 train_loss:5.2722 train_time:3481ms step_avg:158.23ms
step:33/1530 train_loss:5.5787 train_time:3641ms step_avg:158.29ms
step:34/1530 train_loss:5.4943 train_time:3802ms step_avg:158.40ms
step:35/1530 train_loss:5.6097 train_time:3962ms step_avg:158.48ms
step:36/1530 train_loss:5.5360 train_time:4123ms step_avg:158.60ms
step:37/1530 train_loss:5.4551 train_time:4286ms step_avg:158.72ms
step:38/1530 train_loss:5.3036 train_time:4446ms step_avg:158.78ms
step:39/1530 train_loss:5.3333 train_time:4608ms step_avg:158.88ms
step:40/1530 train_loss:5.2500 train_time:4767ms step_avg:158.91ms
step:41/1530 train_loss:5.2374 train_time:4928ms step_avg:158.98ms
step:42/1530 train_loss:5.1605 train_time:5089ms step_avg:159.04ms
step:43/1530 train_loss:5.2746 train_time:5249ms step_avg:159.07ms
step:44/1530 train_loss:5.2420 train_time:5410ms step_avg:159.11ms
step:45/1530 train_loss:5.3912 train_time:5569ms step_avg:159.13ms
step:46/1530 train_loss:5.1785 train_time:5730ms step_avg:159.17ms
step:47/1530 train_loss:5.0639 train_time:5890ms step_avg:159.20ms
step:48/1530 train_loss:5.1992 train_time:6051ms step_avg:159.23ms
step:49/1530 train_loss:5.1539 train_time:6211ms step_avg:159.25ms
step:50/1530 train_loss:5.2564 train_time:6370ms step_avg:159.25ms
step:51/1530 train_loss:5.1342 train_time:6530ms step_avg:159.28ms
step:52/1530 train_loss:5.0162 train_time:6691ms step_avg:159.31ms
step:53/1530 train_loss:5.1589 train_time:6851ms step_avg:159.32ms
step:54/1530 train_loss:5.0096 train_time:7011ms step_avg:159.35ms
step:55/1530 train_loss:5.4062 train_time:7171ms step_avg:159.35ms
step:56/1530 train_loss:5.0190 train_time:7331ms step_avg:159.37ms
step:57/1530 train_loss:4.9017 train_time:7491ms step_avg:159.38ms
step:58/1530 train_loss:5.0692 train_time:7651ms step_avg:159.39ms
step:59/1530 train_loss:5.0241 train_time:7811ms step_avg:159.41ms
step:60/1530 train_loss:5.1384 train_time:7970ms step_avg:159.40ms
step:61/1530 train_loss:4.8648 train_time:8131ms step_avg:159.43ms
step:62/1530 train_loss:4.9872 train_time:8291ms step_avg:159.44ms
step:63/1530 train_loss:4.9709 train_time:8451ms step_avg:159.46ms
step:64/1530 train_loss:4.9338 train_time:8613ms step_avg:159.50ms
step:65/1530 train_loss:4.8116 train_time:8773ms step_avg:159.50ms
step:66/1530 train_loss:4.9093 train_time:8933ms step_avg:159.52ms
step:67/1530 train_loss:4.8088 train_time:9094ms step_avg:159.55ms
step:68/1530 train_loss:5.0728 train_time:9254ms step_avg:159.55ms
step:69/1530 train_loss:4.7192 train_time:9415ms step_avg:159.57ms
step:70/1530 train_loss:4.8367 train_time:9575ms step_avg:159.58ms
step:71/1530 train_loss:4.9835 train_time:9736ms step_avg:159.60ms
step:72/1530 train_loss:4.8734 train_time:9895ms step_avg:159.60ms
step:73/1530 train_loss:4.7444 train_time:10056ms step_avg:159.62ms
step:74/1530 train_loss:4.9037 train_time:10216ms step_avg:159.63ms
step:75/1530 train_loss:4.8644 train_time:10376ms step_avg:159.63ms
step:76/1530 train_loss:4.8012 train_time:10537ms step_avg:159.65ms
step:77/1530 train_loss:4.9040 train_time:10697ms step_avg:159.65ms
step:78/1530 train_loss:5.1193 train_time:10856ms step_avg:159.65ms
step:79/1530 train_loss:4.8492 train_time:11016ms step_avg:159.66ms
step:80/1530 train_loss:4.8424 train_time:11176ms step_avg:159.66ms
step:81/1530 train_loss:4.6423 train_time:11336ms step_avg:159.66ms
step:82/1530 train_loss:4.8239 train_time:11496ms step_avg:159.67ms
step:83/1530 train_loss:4.7738 train_time:11656ms step_avg:159.67ms
step:84/1530 train_loss:4.7534 train_time:11817ms step_avg:159.69ms
step:85/1530 train_loss:4.6197 train_time:11976ms step_avg:159.68ms
step:86/1530 train_loss:4.8366 train_time:12137ms step_avg:159.70ms
step:87/1530 train_loss:4.7562 train_time:12297ms step_avg:159.71ms
step:88/1530 train_loss:4.7532 train_time:12458ms step_avg:159.71ms
step:89/1530 train_loss:4.7051 train_time:12619ms step_avg:159.73ms
step:90/1530 train_loss:4.6401 train_time:12779ms step_avg:159.74ms
step:91/1530 train_loss:4.6256 train_time:12939ms step_avg:159.75ms
step:92/1530 train_loss:4.7843 train_time:13100ms step_avg:159.76ms
step:93/1530 train_loss:4.6151 train_time:13260ms step_avg:159.76ms
step:94/1530 train_loss:4.6503 train_time:13422ms step_avg:159.78ms
step:95/1530 train_loss:4.6800 train_time:13581ms step_avg:159.78ms
step:96/1530 train_loss:4.5800 train_time:13742ms step_avg:159.78ms
step:97/1530 train_loss:4.6596 train_time:13902ms step_avg:159.80ms
step:98/1530 train_loss:4.5932 train_time:14062ms step_avg:159.80ms
step:99/1530 train_loss:4.6783 train_time:14225ms step_avg:159.83ms
step:100/1530 train_loss:4.6851 train_time:14386ms step_avg:159.84ms
step:101/1530 train_loss:4.5508 train_time:14545ms step_avg:159.84ms
step:102/1530 train_loss:4.6998 train_time:14705ms step_avg:159.84ms
step:103/1530 train_loss:4.5870 train_time:14866ms step_avg:159.85ms
step:104/1530 train_loss:4.5484 train_time:15028ms step_avg:159.87ms
step:105/1530 train_loss:4.5560 train_time:15188ms step_avg:159.87ms
step:106/1530 train_loss:4.6137 train_time:15349ms step_avg:159.89ms
step:107/1530 train_loss:4.5128 train_time:15509ms step_avg:159.89ms
step:108/1530 train_loss:4.3607 train_time:15669ms step_avg:159.89ms
step:109/1530 train_loss:4.4822 train_time:15830ms step_avg:159.90ms
step:110/1530 train_loss:4.4909 train_time:15991ms step_avg:159.91ms
step:111/1530 train_loss:4.4164 train_time:16151ms step_avg:159.91ms
step:112/1530 train_loss:4.5912 train_time:16311ms step_avg:159.91ms
step:113/1530 train_loss:4.4898 train_time:16471ms step_avg:159.91ms
step:114/1530 train_loss:4.3689 train_time:16633ms step_avg:159.93ms
step:115/1530 train_loss:4.4953 train_time:16795ms step_avg:159.95ms
step:116/1530 train_loss:4.4629 train_time:16958ms step_avg:159.98ms
step:117/1530 train_loss:4.3511 train_time:17122ms step_avg:160.02ms
step:118/1530 train_loss:4.5818 train_time:17286ms step_avg:160.05ms
step:119/1530 train_loss:4.4484 train_time:17450ms step_avg:160.09ms
step:120/1530 train_loss:4.3384 train_time:17614ms step_avg:160.12ms
step:121/1530 train_loss:4.3037 train_time:17776ms step_avg:160.15ms
step:122/1530 train_loss:4.4376 train_time:17940ms step_avg:160.18ms
step:123/1530 train_loss:4.2723 train_time:18104ms step_avg:160.21ms
step:124/1530 train_loss:4.5812 train_time:18269ms step_avg:160.26ms
step:125/1530 train_loss:4.4368 train_time:18434ms step_avg:160.30ms
step:125/1530 val_loss:4.3944 train_time:18481ms step_avg:160.71ms
step:126/1530 train_loss:4.4155 train_time:18599ms step_avg:160.34ms
step:127/1530 train_loss:4.4301 train_time:18765ms step_avg:160.39ms
step:128/1530 train_loss:4.3638 train_time:18929ms step_avg:160.42ms
step:129/1530 train_loss:4.6645 train_time:19095ms step_avg:160.46ms
step:130/1530 train_loss:4.3416 train_time:19258ms step_avg:160.49ms
step:131/1530 train_loss:4.3947 train_time:19421ms step_avg:160.51ms
step:132/1530 train_loss:4.3478 train_time:19586ms step_avg:160.54ms
step:133/1530 train_loss:4.4431 train_time:19750ms step_avg:160.57ms
step:134/1530 train_loss:4.2541 train_time:19916ms step_avg:160.61ms
step:135/1530 train_loss:4.4285 train_time:20079ms step_avg:160.63ms
step:136/1530 train_loss:4.1984 train_time:20242ms step_avg:160.65ms
step:137/1530 train_loss:4.3577 train_time:20407ms step_avg:160.68ms
step:138/1530 train_loss:4.2676 train_time:20571ms step_avg:160.71ms
step:139/1530 train_loss:4.3694 train_time:20735ms step_avg:160.74ms
step:140/1530 train_loss:4.4616 train_time:20899ms step_avg:160.76ms
step:141/1530 train_loss:4.3103 train_time:21061ms step_avg:160.77ms
step:142/1530 train_loss:4.2969 train_time:21226ms step_avg:160.80ms
step:143/1530 train_loss:4.2482 train_time:21390ms step_avg:160.82ms
step:144/1530 train_loss:4.3438 train_time:21554ms step_avg:160.85ms
step:145/1530 train_loss:4.3142 train_time:21718ms step_avg:160.88ms
step:146/1530 train_loss:4.1642 train_time:21881ms step_avg:160.89ms
step:147/1530 train_loss:4.3134 train_time:22045ms step_avg:160.91ms
step:148/1530 train_loss:4.3604 train_time:22209ms step_avg:160.94ms
step:149/1530 train_loss:4.3067 train_time:22374ms step_avg:160.97ms
step:150/1530 train_loss:4.4391 train_time:22539ms step_avg:160.99ms
step:151/1530 train_loss:4.2572 train_time:22702ms step_avg:161.01ms
step:152/1530 train_loss:4.2624 train_time:22865ms step_avg:161.02ms
step:153/1530 train_loss:4.3563 train_time:23030ms step_avg:161.05ms
step:154/1530 train_loss:4.3536 train_time:23195ms step_avg:161.08ms
step:155/1530 train_loss:4.2607 train_time:23357ms step_avg:161.09ms
step:156/1530 train_loss:4.3485 train_time:23521ms step_avg:161.10ms
step:157/1530 train_loss:4.3985 train_time:23685ms step_avg:161.12ms
step:158/1530 train_loss:4.2248 train_time:23850ms step_avg:161.15ms
step:159/1530 train_loss:4.2853 train_time:24015ms step_avg:161.17ms
step:160/1530 train_loss:4.1237 train_time:24178ms step_avg:161.19ms
step:161/1530 train_loss:4.3432 train_time:24342ms step_avg:161.21ms
step:162/1530 train_loss:4.3543 train_time:24506ms step_avg:161.22ms
step:163/1530 train_loss:4.3315 train_time:24670ms step_avg:161.24ms
step:164/1530 train_loss:4.1695 train_time:24835ms step_avg:161.26ms
step:165/1530 train_loss:4.2754 train_time:24998ms step_avg:161.28ms
step:166/1530 train_loss:4.3367 train_time:25161ms step_avg:161.29ms
step:167/1530 train_loss:4.1896 train_time:25324ms step_avg:161.30ms
step:168/1530 train_loss:4.2667 train_time:25489ms step_avg:161.32ms
step:169/1530 train_loss:4.1497 train_time:25653ms step_avg:161.34ms
step:170/1530 train_loss:4.0128 train_time:25818ms step_avg:161.36ms
step:171/1530 train_loss:4.1964 train_time:25981ms step_avg:161.37ms
step:172/1530 train_loss:4.1933 train_time:26142ms step_avg:161.37ms
step:173/1530 train_loss:4.2577 train_time:26307ms step_avg:161.39ms
step:174/1530 train_loss:4.4160 train_time:26470ms step_avg:161.40ms
step:175/1530 train_loss:4.2435 train_time:26634ms step_avg:161.42ms
step:176/1530 train_loss:4.0829 train_time:26797ms step_avg:161.43ms
step:177/1530 train_loss:4.0524 train_time:26959ms step_avg:161.43ms
step:178/1530 train_loss:4.1658 train_time:27121ms step_avg:161.44ms
step:179/1530 train_loss:4.1161 train_time:27284ms step_avg:161.45ms
step:180/1530 train_loss:4.1122 train_time:27448ms step_avg:161.46ms
step:181/1530 train_loss:4.2910 train_time:27611ms step_avg:161.47ms
step:182/1530 train_loss:4.1412 train_time:27775ms step_avg:161.48ms
step:183/1530 train_loss:4.1158 train_time:27938ms step_avg:161.49ms
step:184/1530 train_loss:4.1002 train_time:28101ms step_avg:161.50ms
step:185/1530 train_loss:4.1837 train_time:28263ms step_avg:161.50ms
step:186/1530 train_loss:4.1561 train_time:28426ms step_avg:161.51ms
step:187/1530 train_loss:4.2046 train_time:28590ms step_avg:161.52ms
step:188/1530 train_loss:4.1500 train_time:28886ms step_avg:162.28ms
step:189/1530 train_loss:4.0948 train_time:29222ms step_avg:163.25ms
step:190/1530 train_loss:4.1933 train_time:29384ms step_avg:163.24ms
step:191/1530 train_loss:4.0674 train_time:29548ms step_avg:163.25ms
step:192/1530 train_loss:4.0263 train_time:29711ms step_avg:163.25ms
step:193/1530 train_loss:4.2444 train_time:29874ms step_avg:163.25ms
step:194/1530 train_loss:4.1714 train_time:30036ms step_avg:163.24ms
step:195/1530 train_loss:4.3365 train_time:30199ms step_avg:163.24ms
step:196/1530 train_loss:4.1626 train_time:30362ms step_avg:163.24ms
step:197/1530 train_loss:4.0326 train_time:30525ms step_avg:163.24ms
step:198/1530 train_loss:4.1717 train_time:30689ms step_avg:163.24ms
step:199/1530 train_loss:4.0291 train_time:30852ms step_avg:163.24ms
step:200/1530 train_loss:4.1014 train_time:31015ms step_avg:163.24ms
step:201/1530 train_loss:3.9832 train_time:31178ms step_avg:163.23ms
step:202/1530 train_loss:4.2401 train_time:31339ms step_avg:163.23ms
step:203/1530 train_loss:4.0560 train_time:31502ms step_avg:163.22ms
step:204/1530 train_loss:4.1891 train_time:31665ms step_avg:163.22ms
step:205/1530 train_loss:4.2481 train_time:31827ms step_avg:163.22ms
step:206/1530 train_loss:3.9385 train_time:31991ms step_avg:163.22ms
step:207/1530 train_loss:4.0702 train_time:32154ms step_avg:163.22ms
step:208/1530 train_loss:4.0891 train_time:32317ms step_avg:163.22ms
step:209/1530 train_loss:4.2258 train_time:32480ms step_avg:163.21ms
step:210/1530 train_loss:4.1788 train_time:32642ms step_avg:163.21ms
step:211/1530 train_loss:4.0448 train_time:32804ms step_avg:163.20ms
step:212/1530 train_loss:4.1141 train_time:32968ms step_avg:163.21ms
step:213/1530 train_loss:4.0324 train_time:33132ms step_avg:163.21ms
step:214/1530 train_loss:4.1066 train_time:33296ms step_avg:163.21ms
step:215/1530 train_loss:3.9436 train_time:33457ms step_avg:163.21ms
step:216/1530 train_loss:3.9888 train_time:33620ms step_avg:163.21ms
step:217/1530 train_loss:4.0042 train_time:33783ms step_avg:163.20ms
step:218/1530 train_loss:4.0776 train_time:33947ms step_avg:163.21ms
step:219/1530 train_loss:4.0596 train_time:34111ms step_avg:163.21ms
step:220/1530 train_loss:4.0665 train_time:34274ms step_avg:163.21ms
step:221/1530 train_loss:4.0755 train_time:34436ms step_avg:163.20ms
step:222/1530 train_loss:3.9710 train_time:34599ms step_avg:163.20ms
step:223/1530 train_loss:3.9727 train_time:34761ms step_avg:163.20ms
step:224/1530 train_loss:4.2862 train_time:34925ms step_avg:163.20ms
step:225/1530 train_loss:3.9166 train_time:35089ms step_avg:163.20ms
step:226/1530 train_loss:3.9803 train_time:35253ms step_avg:163.21ms
step:227/1530 train_loss:3.9646 train_time:35416ms step_avg:163.21ms
step:228/1530 train_loss:4.1298 train_time:35580ms step_avg:163.21ms
step:229/1530 train_loss:3.9061 train_time:35746ms step_avg:163.22ms
step:230/1530 train_loss:4.0304 train_time:35914ms step_avg:163.25ms
step:231/1530 train_loss:3.8913 train_time:36080ms step_avg:163.26ms
step:232/1530 train_loss:3.9553 train_time:36246ms step_avg:163.27ms
step:233/1530 train_loss:4.0768 train_time:36413ms step_avg:163.29ms
step:234/1530 train_loss:4.0234 train_time:36579ms step_avg:163.30ms
step:235/1530 train_loss:3.8928 train_time:36745ms step_avg:163.31ms
step:236/1530 train_loss:4.0582 train_time:36912ms step_avg:163.33ms
step:237/1530 train_loss:4.0648 train_time:37078ms step_avg:163.34ms
step:238/1530 train_loss:3.9184 train_time:37244ms step_avg:163.35ms
step:239/1530 train_loss:4.0588 train_time:37410ms step_avg:163.36ms
step:240/1530 train_loss:4.1025 train_time:37576ms step_avg:163.37ms
step:241/1530 train_loss:3.9514 train_time:37741ms step_avg:163.38ms
step:242/1530 train_loss:4.1321 train_time:37906ms step_avg:163.39ms
step:243/1530 train_loss:4.0130 train_time:38073ms step_avg:163.40ms
step:244/1530 train_loss:4.0871 train_time:38239ms step_avg:163.42ms
step:245/1530 train_loss:4.1420 train_time:38404ms step_avg:163.42ms
step:246/1530 train_loss:4.0408 train_time:38571ms step_avg:163.44ms
step:247/1530 train_loss:3.9917 train_time:38738ms step_avg:163.45ms
step:248/1530 train_loss:4.0810 train_time:38903ms step_avg:163.46ms
step:249/1530 train_loss:3.9122 train_time:39069ms step_avg:163.47ms
step:250/1530 train_loss:3.9557 train_time:39235ms step_avg:163.48ms
step:250/1530 val_loss:3.9894 train_time:39284ms step_avg:163.68ms
step:251/1530 train_loss:4.0586 train_time:39404ms step_avg:163.50ms
step:252/1530 train_loss:4.1450 train_time:39573ms step_avg:163.52ms
step:253/1530 train_loss:3.9217 train_time:39740ms step_avg:163.54ms
step:254/1530 train_loss:3.8661 train_time:39905ms step_avg:163.55ms
step:255/1530 train_loss:4.0674 train_time:40071ms step_avg:163.56ms
step:256/1530 train_loss:3.9586 train_time:40237ms step_avg:163.57ms
step:257/1530 train_loss:3.9690 train_time:40403ms step_avg:163.58ms
step:258/1530 train_loss:3.9714 train_time:40570ms step_avg:163.59ms
step:259/1530 train_loss:4.0160 train_time:40736ms step_avg:163.60ms
step:260/1530 train_loss:4.0444 train_time:40903ms step_avg:163.61ms
step:261/1530 train_loss:4.0093 train_time:41070ms step_avg:163.62ms
step:262/1530 train_loss:3.9819 train_time:41235ms step_avg:163.63ms
step:263/1530 train_loss:3.8778 train_time:41402ms step_avg:163.64ms
step:264/1530 train_loss:3.9785 train_time:41567ms step_avg:163.65ms
step:265/1530 train_loss:3.8527 train_time:41734ms step_avg:163.66ms
step:266/1530 train_loss:3.9061 train_time:41901ms step_avg:163.68ms
step:267/1530 train_loss:3.9083 train_time:42066ms step_avg:163.68ms
step:268/1530 train_loss:3.9500 train_time:42232ms step_avg:163.69ms
step:269/1530 train_loss:3.8387 train_time:42398ms step_avg:163.70ms
step:270/1530 train_loss:4.0876 train_time:42563ms step_avg:163.70ms
step:271/1530 train_loss:3.9530 train_time:42728ms step_avg:163.71ms
step:272/1530 train_loss:3.9120 train_time:42894ms step_avg:163.72ms
step:273/1530 train_loss:3.9287 train_time:43060ms step_avg:163.73ms
step:274/1530 train_loss:4.0236 train_time:43225ms step_avg:163.73ms
step:275/1530 train_loss:4.0433 train_time:43391ms step_avg:163.74ms
step:276/1530 train_loss:4.2160 train_time:43559ms step_avg:163.75ms
step:277/1530 train_loss:4.0388 train_time:43724ms step_avg:163.76ms
step:278/1530 train_loss:4.0742 train_time:43889ms step_avg:163.76ms
step:279/1530 train_loss:3.9837 train_time:44056ms step_avg:163.78ms
step:280/1530 train_loss:4.1723 train_time:44223ms step_avg:163.79ms
step:281/1530 train_loss:3.9699 train_time:44389ms step_avg:163.80ms
step:282/1530 train_loss:3.9283 train_time:44557ms step_avg:163.81ms
step:283/1530 train_loss:3.8959 train_time:44722ms step_avg:163.82ms
step:284/1530 train_loss:4.0339 train_time:44888ms step_avg:163.82ms
step:285/1530 train_loss:4.0474 train_time:45054ms step_avg:163.83ms
step:286/1530 train_loss:4.0766 train_time:45219ms step_avg:163.84ms
step:287/1530 train_loss:3.8868 train_time:45384ms step_avg:163.84ms
step:288/1530 train_loss:3.9963 train_time:45548ms step_avg:163.84ms
step:289/1530 train_loss:3.8637 train_time:45714ms step_avg:163.85ms
step:290/1530 train_loss:3.8351 train_time:45880ms step_avg:163.86ms
step:291/1530 train_loss:3.8871 train_time:46045ms step_avg:163.86ms
step:292/1530 train_loss:3.8499 train_time:46210ms step_avg:163.86ms
step:293/1530 train_loss:3.8969 train_time:46376ms step_avg:163.87ms
step:294/1530 train_loss:3.9305 train_time:46541ms step_avg:163.88ms
step:295/1530 train_loss:3.8294 train_time:46705ms step_avg:163.88ms
step:296/1530 train_loss:3.8511 train_time:46872ms step_avg:163.89ms
step:297/1530 train_loss:3.8546 train_time:47038ms step_avg:163.90ms
step:298/1530 train_loss:3.9554 train_time:47204ms step_avg:163.90ms
step:299/1530 train_loss:3.8089 train_time:47369ms step_avg:163.91ms
step:300/1530 train_loss:3.9564 train_time:47533ms step_avg:163.91ms
step:301/1530 train_loss:3.9436 train_time:47699ms step_avg:163.91ms
step:302/1530 train_loss:3.9162 train_time:47864ms step_avg:163.92ms
step:303/1530 train_loss:3.9671 train_time:48028ms step_avg:163.92ms
step:304/1530 train_loss:3.9552 train_time:48193ms step_avg:163.92ms
step:305/1530 train_loss:4.4457 train_time:48361ms step_avg:163.93ms
step:306/1530 train_loss:3.9292 train_time:48524ms step_avg:163.93ms
step:307/1530 train_loss:3.8204 train_time:48689ms step_avg:163.94ms
step:308/1530 train_loss:3.9659 train_time:48854ms step_avg:163.94ms
step:309/1530 train_loss:3.8546 train_time:49020ms step_avg:163.95ms
step:310/1530 train_loss:4.0635 train_time:49186ms step_avg:163.95ms
step:311/1530 train_loss:3.9141 train_time:49350ms step_avg:163.95ms
step:312/1530 train_loss:3.8536 train_time:49517ms step_avg:163.96ms
step:313/1530 train_loss:3.9210 train_time:49682ms step_avg:163.97ms
step:314/1530 train_loss:4.0439 train_time:49847ms step_avg:163.97ms
step:315/1530 train_loss:3.9333 train_time:50012ms step_avg:163.97ms
step:316/1530 train_loss:3.7818 train_time:50179ms step_avg:163.98ms
step:317/1530 train_loss:3.8578 train_time:50344ms step_avg:163.99ms
step:318/1530 train_loss:3.9111 train_time:50508ms step_avg:163.99ms
step:319/1530 train_loss:3.8698 train_time:50674ms step_avg:163.99ms
step:320/1530 train_loss:3.9935 train_time:50839ms step_avg:164.00ms
step:321/1530 train_loss:3.9467 train_time:51004ms step_avg:164.00ms
step:322/1530 train_loss:3.9187 train_time:51168ms step_avg:164.00ms
step:323/1530 train_loss:4.0020 train_time:51334ms step_avg:164.01ms
step:324/1530 train_loss:3.9295 train_time:51500ms step_avg:164.01ms
step:325/1530 train_loss:3.9939 train_time:51665ms step_avg:164.02ms
step:326/1530 train_loss:3.8749 train_time:51830ms step_avg:164.02ms
step:327/1530 train_loss:4.3681 train_time:51995ms step_avg:164.02ms
step:328/1530 train_loss:4.0542 train_time:52162ms step_avg:164.03ms
step:329/1530 train_loss:3.7874 train_time:52326ms step_avg:164.03ms
step:330/1530 train_loss:3.7422 train_time:52491ms step_avg:164.04ms
step:331/1530 train_loss:3.9703 train_time:52657ms step_avg:164.04ms
step:332/1530 train_loss:3.9015 train_time:52821ms step_avg:164.04ms
step:333/1530 train_loss:3.8695 train_time:52986ms step_avg:164.04ms
step:334/1530 train_loss:3.8301 train_time:53151ms step_avg:164.05ms
step:335/1530 train_loss:3.9987 train_time:53316ms step_avg:164.05ms
step:336/1530 train_loss:3.9521 train_time:53482ms step_avg:164.06ms
step:337/1530 train_loss:4.4161 train_time:53648ms step_avg:164.06ms
step:338/1530 train_loss:3.9211 train_time:53814ms step_avg:164.07ms
step:339/1530 train_loss:3.8518 train_time:53980ms step_avg:164.07ms
step:340/1530 train_loss:3.9231 train_time:54145ms step_avg:164.08ms
step:341/1530 train_loss:3.8487 train_time:54312ms step_avg:164.08ms
step:342/1530 train_loss:3.8012 train_time:54481ms step_avg:164.10ms
step:343/1530 train_loss:3.8176 train_time:54648ms step_avg:164.11ms
step:344/1530 train_loss:3.9823 train_time:54814ms step_avg:164.11ms
step:345/1530 train_loss:3.7970 train_time:54986ms step_avg:164.14ms
step:346/1530 train_loss:3.7534 train_time:55154ms step_avg:164.15ms
step:347/1530 train_loss:3.7756 train_time:55322ms step_avg:164.16ms
step:348/1530 train_loss:3.8415 train_time:55489ms step_avg:164.17ms
step:349/1530 train_loss:3.8180 train_time:55658ms step_avg:164.18ms
step:350/1530 train_loss:3.5589 train_time:55826ms step_avg:164.19ms
step:351/1530 train_loss:3.8134 train_time:55994ms step_avg:164.21ms
step:352/1530 train_loss:4.1618 train_time:56162ms step_avg:164.22ms
step:353/1530 train_loss:3.6449 train_time:56329ms step_avg:164.22ms
step:354/1530 train_loss:3.9152 train_time:56497ms step_avg:164.24ms
step:355/1530 train_loss:3.7677 train_time:56666ms step_avg:164.25ms
step:356/1530 train_loss:3.8755 train_time:56833ms step_avg:164.26ms
step:357/1530 train_loss:3.7445 train_time:57001ms step_avg:164.27ms
step:358/1530 train_loss:3.8553 train_time:57169ms step_avg:164.28ms
step:359/1530 train_loss:3.7621 train_time:57337ms step_avg:164.29ms
step:360/1530 train_loss:3.4114 train_time:57507ms step_avg:164.30ms
step:361/1530 train_loss:4.0122 train_time:57674ms step_avg:164.31ms
step:362/1530 train_loss:3.9156 train_time:57843ms step_avg:164.33ms
step:363/1530 train_loss:3.8250 train_time:58010ms step_avg:164.34ms
step:364/1530 train_loss:3.7306 train_time:58179ms step_avg:164.35ms
step:365/1530 train_loss:3.9068 train_time:58347ms step_avg:164.36ms
step:366/1530 train_loss:3.8522 train_time:58516ms step_avg:164.37ms
step:367/1530 train_loss:3.8466 train_time:58685ms step_avg:164.38ms
step:368/1530 train_loss:3.8378 train_time:58853ms step_avg:164.39ms
step:369/1530 train_loss:3.7371 train_time:59020ms step_avg:164.40ms
step:370/1530 train_loss:3.8725 train_time:59188ms step_avg:164.41ms
step:371/1530 train_loss:3.7237 train_time:59356ms step_avg:164.42ms
step:372/1530 train_loss:3.6824 train_time:59524ms step_avg:164.43ms
step:373/1530 train_loss:3.8993 train_time:59691ms step_avg:164.44ms
step:374/1530 train_loss:3.8139 train_time:59859ms step_avg:164.45ms
step:375/1530 train_loss:3.7894 train_time:60026ms step_avg:164.46ms
step:375/1530 val_loss:3.8123 train_time:60075ms step_avg:164.59ms