-
Notifications
You must be signed in to change notification settings - Fork 183
/
c9f224b2-0811-4d30-8fda-a28bd16a8ac0.txt
2165 lines (2092 loc) · 134 KB
/
c9f224b2-0811-4d30-8fda-a28bd16a8ac0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 01:54:25 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 96W / 700W | 25MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 117W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31836ms step_avg:nanms
step:2/1530 train_loss:10.0830 train_time:31946ms step_avg:nanms
step:3/1530 train_loss:8.3903 train_time:32108ms step_avg:nanms
step:4/1530 train_loss:7.6005 train_time:32268ms step_avg:nanms
step:5/1530 train_loss:7.4460 train_time:32429ms step_avg:nanms
step:6/1530 train_loss:6.9756 train_time:32591ms step_avg:nanms
step:7/1530 train_loss:7.2050 train_time:32752ms step_avg:nanms
step:8/1530 train_loss:6.7317 train_time:32912ms step_avg:nanms
step:9/1530 train_loss:6.6337 train_time:33073ms step_avg:nanms
step:10/1530 train_loss:6.5364 train_time:33233ms step_avg:nanms
step:11/1530 train_loss:6.4976 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3194 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2342 train_time:434ms step_avg:144.81ms
step:14/1530 train_loss:6.1867 train_time:596ms step_avg:148.90ms
step:15/1530 train_loss:6.1904 train_time:756ms step_avg:151.17ms
step:16/1530 train_loss:6.1141 train_time:917ms step_avg:152.78ms
step:17/1530 train_loss:6.1608 train_time:1077ms step_avg:153.81ms
step:18/1530 train_loss:5.9522 train_time:1237ms step_avg:154.65ms
step:19/1530 train_loss:6.0026 train_time:1397ms step_avg:155.19ms
step:20/1530 train_loss:5.6724 train_time:1557ms step_avg:155.66ms
step:21/1530 train_loss:5.9656 train_time:1718ms step_avg:156.14ms
step:22/1530 train_loss:6.1818 train_time:1878ms step_avg:156.46ms
step:23/1530 train_loss:5.8547 train_time:2039ms step_avg:156.81ms
step:24/1530 train_loss:6.0110 train_time:2200ms step_avg:157.13ms
step:25/1530 train_loss:5.6919 train_time:2360ms step_avg:157.37ms
step:26/1530 train_loss:5.5946 train_time:2520ms step_avg:157.52ms
step:27/1530 train_loss:5.7919 train_time:2681ms step_avg:157.69ms
step:28/1530 train_loss:5.3969 train_time:2841ms step_avg:157.83ms
step:29/1530 train_loss:5.6730 train_time:3000ms step_avg:157.90ms
step:30/1530 train_loss:5.4515 train_time:3161ms step_avg:158.07ms
step:31/1530 train_loss:5.4338 train_time:3322ms step_avg:158.20ms
step:32/1530 train_loss:5.2804 train_time:3483ms step_avg:158.34ms
step:33/1530 train_loss:5.5872 train_time:3645ms step_avg:158.46ms
step:34/1530 train_loss:5.4997 train_time:3806ms step_avg:158.58ms
step:35/1530 train_loss:5.5985 train_time:3966ms step_avg:158.63ms
step:36/1530 train_loss:5.5329 train_time:4127ms step_avg:158.72ms
step:37/1530 train_loss:5.4617 train_time:4288ms step_avg:158.81ms
step:38/1530 train_loss:5.3164 train_time:4449ms step_avg:158.88ms
step:39/1530 train_loss:5.3390 train_time:4610ms step_avg:158.96ms
step:40/1530 train_loss:5.2389 train_time:4770ms step_avg:158.99ms
step:41/1530 train_loss:5.2283 train_time:4931ms step_avg:159.07ms
step:42/1530 train_loss:5.1635 train_time:5092ms step_avg:159.13ms
step:43/1530 train_loss:5.2701 train_time:5252ms step_avg:159.15ms
step:44/1530 train_loss:5.2293 train_time:5413ms step_avg:159.22ms
step:45/1530 train_loss:5.3798 train_time:5573ms step_avg:159.24ms
step:46/1530 train_loss:5.1579 train_time:5734ms step_avg:159.26ms
step:47/1530 train_loss:5.0793 train_time:5894ms step_avg:159.30ms
step:48/1530 train_loss:5.2072 train_time:6055ms step_avg:159.34ms
step:49/1530 train_loss:5.1477 train_time:6216ms step_avg:159.38ms
step:50/1530 train_loss:5.2458 train_time:6376ms step_avg:159.40ms
step:51/1530 train_loss:5.1230 train_time:6536ms step_avg:159.40ms
step:52/1530 train_loss:5.0260 train_time:6696ms step_avg:159.42ms
step:53/1530 train_loss:5.1872 train_time:6855ms step_avg:159.41ms
step:54/1530 train_loss:5.0179 train_time:7016ms step_avg:159.45ms
step:55/1530 train_loss:5.3976 train_time:7177ms step_avg:159.48ms
step:56/1530 train_loss:5.0104 train_time:7336ms step_avg:159.48ms
step:57/1530 train_loss:4.8742 train_time:7496ms step_avg:159.50ms
step:58/1530 train_loss:5.0458 train_time:7656ms step_avg:159.51ms
step:59/1530 train_loss:5.0422 train_time:7818ms step_avg:159.55ms
step:60/1530 train_loss:5.1648 train_time:7977ms step_avg:159.55ms
step:61/1530 train_loss:4.8575 train_time:8137ms step_avg:159.54ms
step:62/1530 train_loss:4.9853 train_time:8297ms step_avg:159.56ms
step:63/1530 train_loss:4.9839 train_time:8457ms step_avg:159.57ms
step:64/1530 train_loss:4.9733 train_time:8619ms step_avg:159.61ms
step:65/1530 train_loss:4.7947 train_time:8779ms step_avg:159.62ms
step:66/1530 train_loss:4.9088 train_time:8940ms step_avg:159.64ms
step:67/1530 train_loss:4.8210 train_time:9099ms step_avg:159.62ms
step:68/1530 train_loss:5.0910 train_time:9259ms step_avg:159.64ms
step:69/1530 train_loss:4.7207 train_time:9420ms step_avg:159.66ms
step:70/1530 train_loss:4.8223 train_time:9580ms step_avg:159.67ms
step:71/1530 train_loss:4.9670 train_time:9741ms step_avg:159.69ms
step:72/1530 train_loss:4.8837 train_time:9902ms step_avg:159.71ms
step:73/1530 train_loss:4.7690 train_time:10063ms step_avg:159.72ms
step:74/1530 train_loss:4.8931 train_time:10223ms step_avg:159.73ms
step:75/1530 train_loss:4.8518 train_time:10383ms step_avg:159.74ms
step:76/1530 train_loss:4.7910 train_time:10544ms step_avg:159.75ms
step:77/1530 train_loss:4.9127 train_time:10705ms step_avg:159.78ms
step:78/1530 train_loss:5.0956 train_time:10866ms step_avg:159.79ms
step:79/1530 train_loss:4.8328 train_time:11026ms step_avg:159.80ms
step:80/1530 train_loss:4.8496 train_time:11187ms step_avg:159.81ms
step:81/1530 train_loss:4.6508 train_time:11347ms step_avg:159.82ms
step:82/1530 train_loss:4.8118 train_time:11508ms step_avg:159.83ms
step:83/1530 train_loss:4.7833 train_time:11668ms step_avg:159.83ms
step:84/1530 train_loss:4.7816 train_time:11829ms step_avg:159.85ms
step:85/1530 train_loss:4.6173 train_time:11989ms step_avg:159.86ms
step:86/1530 train_loss:4.8352 train_time:12150ms step_avg:159.87ms
step:87/1530 train_loss:4.7510 train_time:12311ms step_avg:159.88ms
step:88/1530 train_loss:4.7364 train_time:12471ms step_avg:159.89ms
step:89/1530 train_loss:4.6888 train_time:12632ms step_avg:159.90ms
step:90/1530 train_loss:4.6390 train_time:12792ms step_avg:159.90ms
step:91/1530 train_loss:4.6292 train_time:12952ms step_avg:159.90ms
step:92/1530 train_loss:4.7862 train_time:13114ms step_avg:159.92ms
step:93/1530 train_loss:4.6221 train_time:13274ms step_avg:159.93ms
step:94/1530 train_loss:4.6515 train_time:13434ms step_avg:159.93ms
step:95/1530 train_loss:4.7000 train_time:13595ms step_avg:159.94ms
step:96/1530 train_loss:4.5891 train_time:13755ms step_avg:159.94ms
step:97/1530 train_loss:4.6517 train_time:13916ms step_avg:159.95ms
step:98/1530 train_loss:4.5980 train_time:14076ms step_avg:159.96ms
step:99/1530 train_loss:4.6764 train_time:14236ms step_avg:159.95ms
step:100/1530 train_loss:4.6909 train_time:14397ms step_avg:159.97ms
step:101/1530 train_loss:4.5762 train_time:14557ms step_avg:159.96ms
step:102/1530 train_loss:4.7075 train_time:14718ms step_avg:159.98ms
step:103/1530 train_loss:4.5816 train_time:14878ms step_avg:159.98ms
step:104/1530 train_loss:4.5371 train_time:15038ms step_avg:159.98ms
step:105/1530 train_loss:4.5531 train_time:15198ms step_avg:159.98ms
step:106/1530 train_loss:4.6095 train_time:15358ms step_avg:159.98ms
step:107/1530 train_loss:4.5079 train_time:15520ms step_avg:160.00ms
step:108/1530 train_loss:4.3609 train_time:15681ms step_avg:160.01ms
step:109/1530 train_loss:4.4814 train_time:15842ms step_avg:160.02ms
step:110/1530 train_loss:4.4816 train_time:16002ms step_avg:160.02ms
step:111/1530 train_loss:4.4195 train_time:16164ms step_avg:160.04ms
step:112/1530 train_loss:4.6003 train_time:16325ms step_avg:160.05ms
step:113/1530 train_loss:4.5017 train_time:16486ms step_avg:160.06ms
step:114/1530 train_loss:4.3657 train_time:16646ms step_avg:160.06ms
step:115/1530 train_loss:4.5124 train_time:16809ms step_avg:160.08ms
step:116/1530 train_loss:4.4749 train_time:16972ms step_avg:160.11ms
step:117/1530 train_loss:4.3761 train_time:17136ms step_avg:160.15ms
step:118/1530 train_loss:4.5964 train_time:17301ms step_avg:160.20ms
step:119/1530 train_loss:4.4608 train_time:17466ms step_avg:160.24ms
step:120/1530 train_loss:4.3305 train_time:17630ms step_avg:160.28ms
step:121/1530 train_loss:4.2997 train_time:17794ms step_avg:160.31ms
step:122/1530 train_loss:4.4482 train_time:17958ms step_avg:160.34ms
step:123/1530 train_loss:4.2917 train_time:18122ms step_avg:160.37ms
step:124/1530 train_loss:4.6052 train_time:18286ms step_avg:160.41ms
step:125/1530 train_loss:4.4678 train_time:18450ms step_avg:160.44ms
step:125/1530 val_loss:4.4138 train_time:18497ms step_avg:160.85ms
step:126/1530 train_loss:4.4291 train_time:18617ms step_avg:160.49ms
step:127/1530 train_loss:4.4439 train_time:18782ms step_avg:160.53ms
step:128/1530 train_loss:4.3688 train_time:18947ms step_avg:160.57ms
step:129/1530 train_loss:4.6847 train_time:19111ms step_avg:160.60ms
step:130/1530 train_loss:4.3691 train_time:19275ms step_avg:160.63ms
step:131/1530 train_loss:4.4033 train_time:19439ms step_avg:160.65ms
step:132/1530 train_loss:4.3454 train_time:19603ms step_avg:160.68ms
step:133/1530 train_loss:4.4549 train_time:19767ms step_avg:160.70ms
step:134/1530 train_loss:4.2588 train_time:19931ms step_avg:160.73ms
step:135/1530 train_loss:4.4517 train_time:20096ms step_avg:160.77ms
step:136/1530 train_loss:4.2133 train_time:20259ms step_avg:160.79ms
step:137/1530 train_loss:4.3848 train_time:20423ms step_avg:160.81ms
step:138/1530 train_loss:4.2782 train_time:20587ms step_avg:160.84ms
step:139/1530 train_loss:4.3801 train_time:20750ms step_avg:160.85ms
step:140/1530 train_loss:4.4927 train_time:20914ms step_avg:160.88ms
step:141/1530 train_loss:4.3319 train_time:21078ms step_avg:160.90ms
step:142/1530 train_loss:4.3184 train_time:21241ms step_avg:160.92ms
step:143/1530 train_loss:4.2610 train_time:21405ms step_avg:160.94ms
step:144/1530 train_loss:4.3539 train_time:21570ms step_avg:160.97ms
step:145/1530 train_loss:4.3100 train_time:21734ms step_avg:160.99ms
step:146/1530 train_loss:4.1749 train_time:21898ms step_avg:161.01ms
step:147/1530 train_loss:4.3273 train_time:22062ms step_avg:161.03ms
step:148/1530 train_loss:4.3682 train_time:22224ms step_avg:161.04ms
step:149/1530 train_loss:4.3118 train_time:22390ms step_avg:161.08ms
step:150/1530 train_loss:4.4525 train_time:22552ms step_avg:161.09ms
step:151/1530 train_loss:4.2802 train_time:22716ms step_avg:161.11ms
step:152/1530 train_loss:4.2780 train_time:22880ms step_avg:161.13ms
step:153/1530 train_loss:4.3665 train_time:23044ms step_avg:161.15ms
step:154/1530 train_loss:4.3764 train_time:23208ms step_avg:161.17ms
step:155/1530 train_loss:4.2873 train_time:23373ms step_avg:161.19ms
step:156/1530 train_loss:4.3577 train_time:23536ms step_avg:161.20ms
step:157/1530 train_loss:4.4157 train_time:23701ms step_avg:161.23ms
step:158/1530 train_loss:4.2578 train_time:23864ms step_avg:161.25ms
step:159/1530 train_loss:4.3145 train_time:24028ms step_avg:161.26ms
step:160/1530 train_loss:4.1492 train_time:24192ms step_avg:161.28ms
step:161/1530 train_loss:4.3548 train_time:24356ms step_avg:161.30ms
step:162/1530 train_loss:4.3687 train_time:24519ms step_avg:161.31ms
step:163/1530 train_loss:4.3435 train_time:24684ms step_avg:161.33ms
step:164/1530 train_loss:4.1943 train_time:24847ms step_avg:161.35ms
step:165/1530 train_loss:4.2867 train_time:25010ms step_avg:161.36ms
step:166/1530 train_loss:4.3411 train_time:25176ms step_avg:161.38ms
step:167/1530 train_loss:4.2098 train_time:25339ms step_avg:161.39ms
step:168/1530 train_loss:4.3012 train_time:25503ms step_avg:161.41ms
step:169/1530 train_loss:4.1672 train_time:25668ms step_avg:161.43ms
step:170/1530 train_loss:4.0301 train_time:25833ms step_avg:161.46ms
step:171/1530 train_loss:4.2054 train_time:25997ms step_avg:161.47ms
step:172/1530 train_loss:4.2169 train_time:26160ms step_avg:161.48ms
step:173/1530 train_loss:4.2664 train_time:26324ms step_avg:161.49ms
step:174/1530 train_loss:4.4242 train_time:26486ms step_avg:161.50ms
step:175/1530 train_loss:4.2458 train_time:26650ms step_avg:161.51ms
step:176/1530 train_loss:4.0964 train_time:26813ms step_avg:161.52ms
step:177/1530 train_loss:4.0688 train_time:26976ms step_avg:161.53ms
step:178/1530 train_loss:4.1924 train_time:27137ms step_avg:161.53ms
step:179/1530 train_loss:4.1350 train_time:27301ms step_avg:161.55ms
step:180/1530 train_loss:4.1211 train_time:27464ms step_avg:161.55ms
step:181/1530 train_loss:4.3001 train_time:27627ms step_avg:161.56ms
step:182/1530 train_loss:4.1543 train_time:27791ms step_avg:161.57ms
step:183/1530 train_loss:4.1299 train_time:27954ms step_avg:161.58ms
step:184/1530 train_loss:4.1257 train_time:28116ms step_avg:161.59ms
step:185/1530 train_loss:4.2148 train_time:28279ms step_avg:161.59ms
step:186/1530 train_loss:4.1749 train_time:28442ms step_avg:161.60ms
step:187/1530 train_loss:4.2371 train_time:28606ms step_avg:161.61ms
step:188/1530 train_loss:4.1724 train_time:28900ms step_avg:162.36ms
step:189/1530 train_loss:4.1052 train_time:29225ms step_avg:163.27ms
step:190/1530 train_loss:4.2076 train_time:29388ms step_avg:163.27ms
step:191/1530 train_loss:4.0863 train_time:29551ms step_avg:163.27ms
step:192/1530 train_loss:4.0382 train_time:29714ms step_avg:163.26ms
step:193/1530 train_loss:4.2555 train_time:29878ms step_avg:163.27ms
step:194/1530 train_loss:4.1748 train_time:30039ms step_avg:163.26ms
step:195/1530 train_loss:4.3538 train_time:30203ms step_avg:163.26ms
step:196/1530 train_loss:4.1774 train_time:30366ms step_avg:163.26ms
step:197/1530 train_loss:4.0503 train_time:30530ms step_avg:163.26ms
step:198/1530 train_loss:4.1873 train_time:30692ms step_avg:163.26ms
step:199/1530 train_loss:4.0379 train_time:30856ms step_avg:163.26ms
step:200/1530 train_loss:4.1120 train_time:31020ms step_avg:163.26ms
step:201/1530 train_loss:4.0305 train_time:31184ms step_avg:163.27ms
step:202/1530 train_loss:4.2808 train_time:31347ms step_avg:163.27ms
step:203/1530 train_loss:4.0678 train_time:31510ms step_avg:163.26ms
step:204/1530 train_loss:4.1951 train_time:31672ms step_avg:163.26ms
step:205/1530 train_loss:4.2515 train_time:31835ms step_avg:163.26ms
step:206/1530 train_loss:3.9472 train_time:31998ms step_avg:163.26ms
step:207/1530 train_loss:4.0882 train_time:32161ms step_avg:163.25ms
step:208/1530 train_loss:4.1040 train_time:32324ms step_avg:163.25ms
step:209/1530 train_loss:4.2415 train_time:32488ms step_avg:163.26ms
step:210/1530 train_loss:4.1770 train_time:32650ms step_avg:163.25ms
step:211/1530 train_loss:4.0642 train_time:32812ms step_avg:163.25ms
step:212/1530 train_loss:4.1245 train_time:32976ms step_avg:163.25ms
step:213/1530 train_loss:4.0552 train_time:33138ms step_avg:163.24ms
step:214/1530 train_loss:4.1187 train_time:33302ms step_avg:163.25ms
step:215/1530 train_loss:3.9807 train_time:33466ms step_avg:163.25ms
step:216/1530 train_loss:4.0037 train_time:33629ms step_avg:163.25ms
step:217/1530 train_loss:4.0155 train_time:33792ms step_avg:163.25ms
step:218/1530 train_loss:4.0832 train_time:33955ms step_avg:163.24ms
step:219/1530 train_loss:4.0803 train_time:34117ms step_avg:163.24ms
step:220/1530 train_loss:4.0895 train_time:34280ms step_avg:163.24ms
step:221/1530 train_loss:4.0951 train_time:34443ms step_avg:163.24ms
step:222/1530 train_loss:4.0028 train_time:34605ms step_avg:163.23ms
step:223/1530 train_loss:3.9958 train_time:34768ms step_avg:163.23ms
step:224/1530 train_loss:4.3052 train_time:34932ms step_avg:163.23ms
step:225/1530 train_loss:3.9425 train_time:35094ms step_avg:163.23ms
step:226/1530 train_loss:3.9916 train_time:35258ms step_avg:163.23ms
step:227/1530 train_loss:3.9800 train_time:35421ms step_avg:163.23ms
step:228/1530 train_loss:4.1571 train_time:35586ms step_avg:163.24ms
step:229/1530 train_loss:3.9267 train_time:35754ms step_avg:163.26ms
step:230/1530 train_loss:4.0470 train_time:35919ms step_avg:163.27ms
step:231/1530 train_loss:3.9007 train_time:36085ms step_avg:163.28ms
step:232/1530 train_loss:3.9724 train_time:36252ms step_avg:163.30ms
step:233/1530 train_loss:4.1012 train_time:36418ms step_avg:163.31ms
step:234/1530 train_loss:4.0392 train_time:36584ms step_avg:163.32ms
step:235/1530 train_loss:3.9162 train_time:36751ms step_avg:163.34ms
step:236/1530 train_loss:4.0889 train_time:36917ms step_avg:163.35ms
step:237/1530 train_loss:4.0886 train_time:37083ms step_avg:163.36ms
step:238/1530 train_loss:3.9440 train_time:37251ms step_avg:163.38ms
step:239/1530 train_loss:4.0757 train_time:37416ms step_avg:163.39ms
step:240/1530 train_loss:4.1178 train_time:37582ms step_avg:163.40ms
step:241/1530 train_loss:3.9771 train_time:37748ms step_avg:163.41ms
step:242/1530 train_loss:4.1532 train_time:37915ms step_avg:163.43ms
step:243/1530 train_loss:4.0153 train_time:38081ms step_avg:163.44ms
step:244/1530 train_loss:4.0835 train_time:38246ms step_avg:163.44ms
step:245/1530 train_loss:4.1447 train_time:38412ms step_avg:163.46ms
step:246/1530 train_loss:4.0565 train_time:38578ms step_avg:163.47ms
step:247/1530 train_loss:4.0011 train_time:38743ms step_avg:163.47ms
step:248/1530 train_loss:4.1098 train_time:38909ms step_avg:163.49ms
step:249/1530 train_loss:3.9350 train_time:39076ms step_avg:163.50ms
step:250/1530 train_loss:3.9870 train_time:39240ms step_avg:163.50ms
step:250/1530 val_loss:4.0128 train_time:39289ms step_avg:163.70ms
step:251/1530 train_loss:4.0836 train_time:39407ms step_avg:163.51ms
step:252/1530 train_loss:4.1638 train_time:39573ms step_avg:163.53ms
step:253/1530 train_loss:3.9297 train_time:39740ms step_avg:163.54ms
step:254/1530 train_loss:3.8841 train_time:39906ms step_avg:163.55ms
step:255/1530 train_loss:4.0874 train_time:40073ms step_avg:163.56ms
step:256/1530 train_loss:3.9898 train_time:40239ms step_avg:163.57ms
step:257/1530 train_loss:3.9890 train_time:40404ms step_avg:163.58ms
step:258/1530 train_loss:3.9823 train_time:40570ms step_avg:163.59ms
step:259/1530 train_loss:4.0285 train_time:40737ms step_avg:163.60ms
step:260/1530 train_loss:4.0626 train_time:40903ms step_avg:163.61ms
step:261/1530 train_loss:4.0279 train_time:41069ms step_avg:163.62ms
step:262/1530 train_loss:4.0034 train_time:41236ms step_avg:163.63ms
step:263/1530 train_loss:3.8995 train_time:41401ms step_avg:163.64ms
step:264/1530 train_loss:3.9932 train_time:41567ms step_avg:163.65ms
step:265/1530 train_loss:3.8704 train_time:41735ms step_avg:163.67ms
step:266/1530 train_loss:3.9227 train_time:41900ms step_avg:163.67ms
step:267/1530 train_loss:3.9264 train_time:42066ms step_avg:163.68ms
step:268/1530 train_loss:3.9635 train_time:42233ms step_avg:163.69ms
step:269/1530 train_loss:3.8653 train_time:42398ms step_avg:163.70ms
step:270/1530 train_loss:4.1047 train_time:42564ms step_avg:163.71ms
step:271/1530 train_loss:3.9693 train_time:42732ms step_avg:163.72ms
step:272/1530 train_loss:3.9309 train_time:42897ms step_avg:163.73ms
step:273/1530 train_loss:3.9515 train_time:43063ms step_avg:163.74ms
step:274/1530 train_loss:4.0429 train_time:43230ms step_avg:163.75ms
step:275/1530 train_loss:4.0610 train_time:43395ms step_avg:163.75ms
step:276/1530 train_loss:4.2261 train_time:43562ms step_avg:163.77ms
step:277/1530 train_loss:4.0411 train_time:43728ms step_avg:163.77ms
step:278/1530 train_loss:4.0941 train_time:43895ms step_avg:163.79ms
step:279/1530 train_loss:4.0076 train_time:44061ms step_avg:163.80ms
step:280/1530 train_loss:4.1876 train_time:44230ms step_avg:163.81ms
step:281/1530 train_loss:3.9810 train_time:44396ms step_avg:163.82ms
step:282/1530 train_loss:3.9548 train_time:44562ms step_avg:163.83ms
step:283/1530 train_loss:3.9184 train_time:44729ms step_avg:163.84ms
step:284/1530 train_loss:4.0543 train_time:44894ms step_avg:163.85ms
step:285/1530 train_loss:4.0687 train_time:45059ms step_avg:163.85ms
step:286/1530 train_loss:4.0927 train_time:45224ms step_avg:163.86ms
step:287/1530 train_loss:3.9132 train_time:45389ms step_avg:163.86ms
step:288/1530 train_loss:4.0175 train_time:45554ms step_avg:163.86ms
step:289/1530 train_loss:3.8779 train_time:45719ms step_avg:163.87ms
step:290/1530 train_loss:3.8589 train_time:45885ms step_avg:163.88ms
step:291/1530 train_loss:3.9129 train_time:46053ms step_avg:163.89ms
step:292/1530 train_loss:3.8699 train_time:46218ms step_avg:163.89ms
step:293/1530 train_loss:3.9122 train_time:46383ms step_avg:163.90ms
step:294/1530 train_loss:3.9351 train_time:46549ms step_avg:163.90ms
step:295/1530 train_loss:3.8432 train_time:46715ms step_avg:163.91ms
step:296/1530 train_loss:3.8649 train_time:46880ms step_avg:163.91ms
step:297/1530 train_loss:3.8661 train_time:47047ms step_avg:163.93ms
step:298/1530 train_loss:3.9737 train_time:47214ms step_avg:163.94ms
step:299/1530 train_loss:3.8231 train_time:47378ms step_avg:163.94ms
step:300/1530 train_loss:3.9705 train_time:47544ms step_avg:163.95ms
step:301/1530 train_loss:3.9615 train_time:47710ms step_avg:163.95ms
step:302/1530 train_loss:3.9311 train_time:47875ms step_avg:163.95ms
step:303/1530 train_loss:3.9812 train_time:48039ms step_avg:163.96ms
step:304/1530 train_loss:3.9800 train_time:48204ms step_avg:163.96ms
step:305/1530 train_loss:4.4519 train_time:48370ms step_avg:163.97ms
step:306/1530 train_loss:3.9402 train_time:48535ms step_avg:163.97ms
step:307/1530 train_loss:3.8364 train_time:48699ms step_avg:163.97ms
step:308/1530 train_loss:3.9809 train_time:48865ms step_avg:163.98ms
step:309/1530 train_loss:3.8679 train_time:49032ms step_avg:163.99ms
step:310/1530 train_loss:4.0873 train_time:49196ms step_avg:163.99ms
step:311/1530 train_loss:3.9313 train_time:49362ms step_avg:163.99ms
step:312/1530 train_loss:3.8664 train_time:49527ms step_avg:164.00ms
step:313/1530 train_loss:3.9420 train_time:49693ms step_avg:164.00ms
step:314/1530 train_loss:4.0698 train_time:49858ms step_avg:164.01ms
step:315/1530 train_loss:3.9500 train_time:50022ms step_avg:164.01ms
step:316/1530 train_loss:3.7981 train_time:50189ms step_avg:164.02ms
step:317/1530 train_loss:3.8775 train_time:50355ms step_avg:164.02ms
step:318/1530 train_loss:3.9296 train_time:50520ms step_avg:164.03ms
step:319/1530 train_loss:3.8957 train_time:50685ms step_avg:164.03ms
step:320/1530 train_loss:4.0125 train_time:50851ms step_avg:164.04ms
step:321/1530 train_loss:3.9669 train_time:51016ms step_avg:164.04ms
step:322/1530 train_loss:3.9346 train_time:51181ms step_avg:164.04ms
step:323/1530 train_loss:4.0057 train_time:51347ms step_avg:164.05ms
step:324/1530 train_loss:3.9557 train_time:51513ms step_avg:164.05ms
step:325/1530 train_loss:4.0188 train_time:51678ms step_avg:164.06ms
step:326/1530 train_loss:3.9010 train_time:51843ms step_avg:164.06ms
step:327/1530 train_loss:4.3986 train_time:52009ms step_avg:164.07ms
step:328/1530 train_loss:4.0737 train_time:52176ms step_avg:164.07ms
step:329/1530 train_loss:3.7895 train_time:52341ms step_avg:164.08ms
step:330/1530 train_loss:3.7523 train_time:52506ms step_avg:164.08ms
step:331/1530 train_loss:3.9770 train_time:52671ms step_avg:164.09ms
step:332/1530 train_loss:3.9194 train_time:52836ms step_avg:164.09ms
step:333/1530 train_loss:3.9002 train_time:53001ms step_avg:164.09ms
step:334/1530 train_loss:3.8522 train_time:53166ms step_avg:164.09ms
step:335/1530 train_loss:4.0170 train_time:53332ms step_avg:164.10ms
step:336/1530 train_loss:3.9633 train_time:53496ms step_avg:164.10ms
step:337/1530 train_loss:4.4253 train_time:53662ms step_avg:164.10ms
step:338/1530 train_loss:3.9450 train_time:53828ms step_avg:164.11ms
step:339/1530 train_loss:3.8684 train_time:53993ms step_avg:164.11ms
step:340/1530 train_loss:3.9442 train_time:54158ms step_avg:164.11ms
step:341/1530 train_loss:3.8598 train_time:54325ms step_avg:164.12ms
step:342/1530 train_loss:3.8184 train_time:54493ms step_avg:164.14ms
step:343/1530 train_loss:3.8419 train_time:54661ms step_avg:164.15ms
step:344/1530 train_loss:4.0002 train_time:54828ms step_avg:164.16ms
step:345/1530 train_loss:3.8253 train_time:54996ms step_avg:164.17ms
step:346/1530 train_loss:3.7738 train_time:55165ms step_avg:164.18ms
step:347/1530 train_loss:3.8071 train_time:55337ms step_avg:164.20ms
step:348/1530 train_loss:3.8655 train_time:55504ms step_avg:164.21ms
step:349/1530 train_loss:3.8293 train_time:55672ms step_avg:164.22ms
step:350/1530 train_loss:3.5644 train_time:55841ms step_avg:164.24ms
step:351/1530 train_loss:3.8261 train_time:56008ms step_avg:164.25ms
step:352/1530 train_loss:4.1770 train_time:56177ms step_avg:164.26ms
step:353/1530 train_loss:3.6627 train_time:56345ms step_avg:164.27ms
step:354/1530 train_loss:3.9311 train_time:56513ms step_avg:164.28ms
step:355/1530 train_loss:3.7873 train_time:56681ms step_avg:164.29ms
step:356/1530 train_loss:3.8887 train_time:56852ms step_avg:164.31ms
step:357/1530 train_loss:3.7738 train_time:57021ms step_avg:164.32ms
step:358/1530 train_loss:3.8668 train_time:57189ms step_avg:164.34ms
step:359/1530 train_loss:3.7766 train_time:57360ms step_avg:164.35ms
step:360/1530 train_loss:3.4336 train_time:57529ms step_avg:164.37ms
step:361/1530 train_loss:4.0285 train_time:57697ms step_avg:164.38ms
step:362/1530 train_loss:3.9250 train_time:57864ms step_avg:164.39ms
step:363/1530 train_loss:3.8428 train_time:58034ms step_avg:164.40ms
step:364/1530 train_loss:3.7492 train_time:58203ms step_avg:164.42ms
step:365/1530 train_loss:3.9145 train_time:58373ms step_avg:164.43ms
step:366/1530 train_loss:3.8651 train_time:58541ms step_avg:164.44ms
step:367/1530 train_loss:3.8656 train_time:58708ms step_avg:164.45ms
step:368/1530 train_loss:3.8568 train_time:58876ms step_avg:164.46ms
step:369/1530 train_loss:3.7493 train_time:59045ms step_avg:164.47ms
step:370/1530 train_loss:3.8819 train_time:59213ms step_avg:164.48ms
step:371/1530 train_loss:3.7332 train_time:59381ms step_avg:164.49ms
step:372/1530 train_loss:3.6901 train_time:59549ms step_avg:164.50ms
step:373/1530 train_loss:3.9117 train_time:59716ms step_avg:164.51ms
step:374/1530 train_loss:3.8243 train_time:59884ms step_avg:164.52ms
step:375/1530 train_loss:3.8034 train_time:60053ms step_avg:164.53ms
step:375/1530 val_loss:3.8290 train_time:60100ms step_avg:164.66ms