-
Notifications
You must be signed in to change notification settings - Fork 183
/
968f73e2-b588-4102-80b0-996bae126be1.txt
2165 lines (2092 loc) · 134 KB
/
968f73e2-b588-4102-80b0-996bae126be1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:38:03 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31749ms step_avg:nanms
step:2/1530 train_loss:10.0612 train_time:31860ms step_avg:nanms
step:3/1530 train_loss:8.3630 train_time:32019ms step_avg:nanms
step:4/1530 train_loss:7.5422 train_time:32181ms step_avg:nanms
step:5/1530 train_loss:7.4384 train_time:32342ms step_avg:nanms
step:6/1530 train_loss:6.9705 train_time:32502ms step_avg:nanms
step:7/1530 train_loss:7.1808 train_time:32663ms step_avg:nanms
step:8/1530 train_loss:6.7220 train_time:32823ms step_avg:nanms
step:9/1530 train_loss:6.6189 train_time:32984ms step_avg:nanms
step:10/1530 train_loss:6.4856 train_time:33145ms step_avg:nanms
step:11/1530 train_loss:6.4706 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3340 train_time:276ms step_avg:nanms
step:13/1530 train_loss:6.2415 train_time:436ms step_avg:145.17ms
step:14/1530 train_loss:6.1864 train_time:596ms step_avg:149.10ms
step:15/1530 train_loss:6.1742 train_time:757ms step_avg:151.36ms
step:16/1530 train_loss:6.0900 train_time:917ms step_avg:152.81ms
step:17/1530 train_loss:6.1374 train_time:1078ms step_avg:153.96ms
step:18/1530 train_loss:5.9280 train_time:1238ms step_avg:154.73ms
step:19/1530 train_loss:6.0002 train_time:1398ms step_avg:155.36ms
step:20/1530 train_loss:5.6459 train_time:1559ms step_avg:155.86ms
step:21/1530 train_loss:5.9239 train_time:1719ms step_avg:156.26ms
step:22/1530 train_loss:6.1503 train_time:1879ms step_avg:156.54ms
step:23/1530 train_loss:5.8589 train_time:2039ms step_avg:156.86ms
step:24/1530 train_loss:6.0162 train_time:2200ms step_avg:157.13ms
step:25/1530 train_loss:5.6679 train_time:2360ms step_avg:157.36ms
step:26/1530 train_loss:5.5707 train_time:2520ms step_avg:157.49ms
step:27/1530 train_loss:5.7970 train_time:2681ms step_avg:157.73ms
step:28/1530 train_loss:5.3776 train_time:2843ms step_avg:157.95ms
step:29/1530 train_loss:5.6583 train_time:3002ms step_avg:158.00ms
step:30/1530 train_loss:5.4571 train_time:3163ms step_avg:158.15ms
step:31/1530 train_loss:5.4306 train_time:3325ms step_avg:158.33ms
step:32/1530 train_loss:5.2555 train_time:3486ms step_avg:158.44ms
step:33/1530 train_loss:5.5628 train_time:3646ms step_avg:158.51ms
step:34/1530 train_loss:5.4829 train_time:3807ms step_avg:158.61ms
step:35/1530 train_loss:5.6086 train_time:3968ms step_avg:158.70ms
step:36/1530 train_loss:5.5404 train_time:4127ms step_avg:158.75ms
step:37/1530 train_loss:5.4540 train_time:4290ms step_avg:158.87ms
step:38/1530 train_loss:5.2941 train_time:4451ms step_avg:158.95ms
step:39/1530 train_loss:5.3189 train_time:4612ms step_avg:159.03ms
step:40/1530 train_loss:5.2355 train_time:4773ms step_avg:159.09ms
step:41/1530 train_loss:5.2237 train_time:4932ms step_avg:159.10ms
step:42/1530 train_loss:5.1489 train_time:5093ms step_avg:159.17ms
step:43/1530 train_loss:5.2513 train_time:5253ms step_avg:159.20ms
step:44/1530 train_loss:5.2137 train_time:5414ms step_avg:159.25ms
step:45/1530 train_loss:5.3670 train_time:5575ms step_avg:159.29ms
step:46/1530 train_loss:5.1649 train_time:5735ms step_avg:159.31ms
step:47/1530 train_loss:5.0727 train_time:5896ms step_avg:159.34ms
step:48/1530 train_loss:5.1931 train_time:6056ms step_avg:159.37ms
step:49/1530 train_loss:5.1327 train_time:6216ms step_avg:159.39ms
step:50/1530 train_loss:5.2387 train_time:6377ms step_avg:159.42ms
step:51/1530 train_loss:5.1284 train_time:6537ms step_avg:159.43ms
step:52/1530 train_loss:5.0261 train_time:6697ms step_avg:159.44ms
step:53/1530 train_loss:5.1766 train_time:6856ms step_avg:159.45ms
step:54/1530 train_loss:4.9984 train_time:7017ms step_avg:159.47ms
step:55/1530 train_loss:5.3916 train_time:7177ms step_avg:159.50ms
step:56/1530 train_loss:5.0149 train_time:7339ms step_avg:159.54ms
step:57/1530 train_loss:4.8782 train_time:7500ms step_avg:159.58ms
step:58/1530 train_loss:5.0409 train_time:7661ms step_avg:159.60ms
step:59/1530 train_loss:5.0191 train_time:7822ms step_avg:159.63ms
step:60/1530 train_loss:5.1368 train_time:7981ms step_avg:159.62ms
step:61/1530 train_loss:4.8497 train_time:8141ms step_avg:159.63ms
step:62/1530 train_loss:4.9715 train_time:8303ms step_avg:159.67ms
step:63/1530 train_loss:4.9729 train_time:8463ms step_avg:159.68ms
step:64/1530 train_loss:4.9951 train_time:8622ms step_avg:159.67ms
step:65/1530 train_loss:4.7988 train_time:8785ms step_avg:159.72ms
step:66/1530 train_loss:4.9016 train_time:8946ms step_avg:159.76ms
step:67/1530 train_loss:4.8074 train_time:9106ms step_avg:159.76ms
step:68/1530 train_loss:5.0806 train_time:9267ms step_avg:159.77ms
step:69/1530 train_loss:4.7131 train_time:9428ms step_avg:159.79ms
step:70/1530 train_loss:4.8381 train_time:9588ms step_avg:159.80ms
step:71/1530 train_loss:4.9513 train_time:9750ms step_avg:159.84ms
step:72/1530 train_loss:4.8584 train_time:9911ms step_avg:159.85ms
step:73/1530 train_loss:4.7462 train_time:10071ms step_avg:159.85ms
step:74/1530 train_loss:4.8857 train_time:10231ms step_avg:159.86ms
step:75/1530 train_loss:4.8402 train_time:10392ms step_avg:159.88ms
step:76/1530 train_loss:4.7913 train_time:10553ms step_avg:159.89ms
step:77/1530 train_loss:4.9215 train_time:10712ms step_avg:159.89ms
step:78/1530 train_loss:5.1182 train_time:10873ms step_avg:159.90ms
step:79/1530 train_loss:4.8027 train_time:11033ms step_avg:159.89ms
step:80/1530 train_loss:4.8414 train_time:11194ms step_avg:159.92ms
step:81/1530 train_loss:4.6373 train_time:11354ms step_avg:159.92ms
step:82/1530 train_loss:4.8130 train_time:11515ms step_avg:159.93ms
step:83/1530 train_loss:4.7748 train_time:11676ms step_avg:159.94ms
step:84/1530 train_loss:4.7568 train_time:11836ms step_avg:159.94ms
step:85/1530 train_loss:4.6183 train_time:11996ms step_avg:159.95ms
step:86/1530 train_loss:4.8234 train_time:12157ms step_avg:159.96ms
step:87/1530 train_loss:4.7256 train_time:12317ms step_avg:159.96ms
step:88/1530 train_loss:4.7346 train_time:12477ms step_avg:159.96ms
step:89/1530 train_loss:4.6937 train_time:12638ms step_avg:159.97ms
step:90/1530 train_loss:4.6437 train_time:12797ms step_avg:159.97ms
step:91/1530 train_loss:4.6191 train_time:12958ms step_avg:159.97ms
step:92/1530 train_loss:4.7666 train_time:13118ms step_avg:159.97ms
step:93/1530 train_loss:4.5889 train_time:13278ms step_avg:159.98ms
step:94/1530 train_loss:4.6400 train_time:13438ms step_avg:159.98ms
step:95/1530 train_loss:4.6578 train_time:13598ms step_avg:159.98ms
step:96/1530 train_loss:4.5683 train_time:13758ms step_avg:159.98ms
step:97/1530 train_loss:4.6020 train_time:13920ms step_avg:160.00ms
step:98/1530 train_loss:4.5622 train_time:14080ms step_avg:160.00ms
step:99/1530 train_loss:4.6577 train_time:14240ms step_avg:160.00ms
step:100/1530 train_loss:4.6670 train_time:14401ms step_avg:160.01ms
step:101/1530 train_loss:4.5013 train_time:14560ms step_avg:160.00ms
step:102/1530 train_loss:4.6848 train_time:14722ms step_avg:160.02ms
step:103/1530 train_loss:4.5603 train_time:14882ms step_avg:160.02ms
step:104/1530 train_loss:4.5408 train_time:15042ms step_avg:160.03ms
step:105/1530 train_loss:4.5498 train_time:15204ms step_avg:160.04ms
step:106/1530 train_loss:4.5852 train_time:15365ms step_avg:160.05ms
step:107/1530 train_loss:4.4916 train_time:15525ms step_avg:160.05ms
step:108/1530 train_loss:4.3511 train_time:15684ms step_avg:160.04ms
step:109/1530 train_loss:4.4788 train_time:15845ms step_avg:160.05ms
step:110/1530 train_loss:4.4754 train_time:16007ms step_avg:160.07ms
step:111/1530 train_loss:4.4116 train_time:16167ms step_avg:160.07ms
step:112/1530 train_loss:4.5788 train_time:16328ms step_avg:160.08ms
step:113/1530 train_loss:4.4872 train_time:16489ms step_avg:160.09ms
step:114/1530 train_loss:4.3618 train_time:16650ms step_avg:160.10ms
step:115/1530 train_loss:4.5097 train_time:16813ms step_avg:160.12ms
step:116/1530 train_loss:4.4658 train_time:16978ms step_avg:160.17ms
step:117/1530 train_loss:4.3621 train_time:17142ms step_avg:160.20ms
step:118/1530 train_loss:4.5794 train_time:17306ms step_avg:160.24ms
step:119/1530 train_loss:4.4461 train_time:17471ms step_avg:160.28ms
step:120/1530 train_loss:4.3112 train_time:17634ms step_avg:160.31ms
step:121/1530 train_loss:4.2851 train_time:17799ms step_avg:160.35ms
step:122/1530 train_loss:4.4421 train_time:17963ms step_avg:160.38ms
step:123/1530 train_loss:4.2655 train_time:18126ms step_avg:160.41ms
step:124/1530 train_loss:4.5682 train_time:18291ms step_avg:160.45ms
step:125/1530 train_loss:4.4395 train_time:18455ms step_avg:160.48ms
step:125/1530 val_loss:4.3820 train_time:18503ms step_avg:160.89ms
step:126/1530 train_loss:4.3901 train_time:18622ms step_avg:160.54ms
step:127/1530 train_loss:4.4167 train_time:18788ms step_avg:160.58ms
step:128/1530 train_loss:4.3628 train_time:18953ms step_avg:160.62ms
step:129/1530 train_loss:4.6733 train_time:19117ms step_avg:160.65ms
step:130/1530 train_loss:4.3544 train_time:19280ms step_avg:160.67ms
step:131/1530 train_loss:4.3989 train_time:19446ms step_avg:160.71ms
step:132/1530 train_loss:4.3381 train_time:19609ms step_avg:160.73ms
step:133/1530 train_loss:4.4441 train_time:19774ms step_avg:160.76ms
step:134/1530 train_loss:4.2525 train_time:19938ms step_avg:160.79ms
step:135/1530 train_loss:4.4359 train_time:20104ms step_avg:160.83ms
step:136/1530 train_loss:4.2002 train_time:20270ms step_avg:160.88ms
step:137/1530 train_loss:4.3659 train_time:20434ms step_avg:160.90ms
step:138/1530 train_loss:4.2766 train_time:20598ms step_avg:160.92ms
step:139/1530 train_loss:4.3699 train_time:20761ms step_avg:160.94ms
step:140/1530 train_loss:4.4628 train_time:20927ms step_avg:160.97ms
step:141/1530 train_loss:4.2990 train_time:21090ms step_avg:161.00ms
step:142/1530 train_loss:4.2989 train_time:21254ms step_avg:161.01ms
step:143/1530 train_loss:4.2502 train_time:21418ms step_avg:161.04ms
step:144/1530 train_loss:4.3481 train_time:21583ms step_avg:161.06ms
step:145/1530 train_loss:4.3129 train_time:21745ms step_avg:161.08ms
step:146/1530 train_loss:4.1743 train_time:21908ms step_avg:161.09ms
step:147/1530 train_loss:4.3240 train_time:22072ms step_avg:161.11ms
step:148/1530 train_loss:4.3570 train_time:22235ms step_avg:161.12ms
step:149/1530 train_loss:4.3046 train_time:22399ms step_avg:161.14ms
step:150/1530 train_loss:4.4429 train_time:22564ms step_avg:161.17ms
step:151/1530 train_loss:4.2728 train_time:22728ms step_avg:161.19ms
step:152/1530 train_loss:4.2608 train_time:22892ms step_avg:161.21ms
step:153/1530 train_loss:4.3532 train_time:23055ms step_avg:161.23ms
step:154/1530 train_loss:4.3605 train_time:23220ms step_avg:161.25ms
step:155/1530 train_loss:4.2734 train_time:23383ms step_avg:161.26ms
step:156/1530 train_loss:4.3496 train_time:23548ms step_avg:161.28ms
step:157/1530 train_loss:4.4020 train_time:23711ms step_avg:161.30ms
step:158/1530 train_loss:4.2335 train_time:23875ms step_avg:161.32ms
step:159/1530 train_loss:4.2923 train_time:24038ms step_avg:161.33ms
step:160/1530 train_loss:4.1184 train_time:24204ms step_avg:161.36ms
step:161/1530 train_loss:4.3467 train_time:24368ms step_avg:161.38ms
step:162/1530 train_loss:4.3553 train_time:24531ms step_avg:161.39ms
step:163/1530 train_loss:4.3352 train_time:24694ms step_avg:161.40ms
step:164/1530 train_loss:4.1902 train_time:24858ms step_avg:161.42ms
step:165/1530 train_loss:4.2822 train_time:25023ms step_avg:161.44ms
step:166/1530 train_loss:4.3429 train_time:25186ms step_avg:161.45ms
step:167/1530 train_loss:4.1934 train_time:25350ms step_avg:161.47ms
step:168/1530 train_loss:4.2785 train_time:25514ms step_avg:161.48ms
step:169/1530 train_loss:4.1578 train_time:25678ms step_avg:161.49ms
step:170/1530 train_loss:4.0335 train_time:25842ms step_avg:161.51ms
step:171/1530 train_loss:4.1988 train_time:26004ms step_avg:161.52ms
step:172/1530 train_loss:4.2131 train_time:26168ms step_avg:161.53ms
step:173/1530 train_loss:4.2785 train_time:26330ms step_avg:161.54ms
step:174/1530 train_loss:4.4201 train_time:26493ms step_avg:161.54ms
step:175/1530 train_loss:4.2378 train_time:26656ms step_avg:161.55ms
step:176/1530 train_loss:4.0846 train_time:26818ms step_avg:161.56ms
step:177/1530 train_loss:4.0675 train_time:26980ms step_avg:161.56ms
step:178/1530 train_loss:4.1826 train_time:27144ms step_avg:161.57ms
step:179/1530 train_loss:4.1131 train_time:27306ms step_avg:161.58ms
step:180/1530 train_loss:4.1088 train_time:27470ms step_avg:161.59ms
step:181/1530 train_loss:4.2953 train_time:27632ms step_avg:161.59ms
step:182/1530 train_loss:4.1619 train_time:27794ms step_avg:161.60ms
step:183/1530 train_loss:4.1323 train_time:27956ms step_avg:161.60ms
step:184/1530 train_loss:4.1215 train_time:28120ms step_avg:161.61ms
step:185/1530 train_loss:4.2024 train_time:28282ms step_avg:161.61ms
step:186/1530 train_loss:4.1663 train_time:28445ms step_avg:161.62ms
step:187/1530 train_loss:4.2175 train_time:28607ms step_avg:161.62ms
step:188/1530 train_loss:4.1669 train_time:28913ms step_avg:162.43ms
step:189/1530 train_loss:4.1026 train_time:29242ms step_avg:163.36ms
step:190/1530 train_loss:4.2009 train_time:29406ms step_avg:163.36ms
step:191/1530 train_loss:4.0748 train_time:29569ms step_avg:163.37ms
step:192/1530 train_loss:4.0201 train_time:29732ms step_avg:163.36ms
step:193/1530 train_loss:4.2427 train_time:29894ms step_avg:163.36ms
step:194/1530 train_loss:4.1631 train_time:30056ms step_avg:163.35ms
step:195/1530 train_loss:4.3477 train_time:30219ms step_avg:163.35ms
step:196/1530 train_loss:4.1716 train_time:30381ms step_avg:163.34ms
step:197/1530 train_loss:4.0436 train_time:30544ms step_avg:163.34ms
step:198/1530 train_loss:4.1646 train_time:30706ms step_avg:163.33ms
step:199/1530 train_loss:4.0333 train_time:30870ms step_avg:163.33ms
step:200/1530 train_loss:4.1082 train_time:31032ms step_avg:163.33ms
step:201/1530 train_loss:4.0094 train_time:31194ms step_avg:163.32ms
step:202/1530 train_loss:4.2557 train_time:31358ms step_avg:163.32ms
step:203/1530 train_loss:4.0571 train_time:31522ms step_avg:163.32ms
step:204/1530 train_loss:4.1850 train_time:31684ms step_avg:163.32ms
step:205/1530 train_loss:4.2465 train_time:31847ms step_avg:163.32ms
step:206/1530 train_loss:3.9478 train_time:32010ms step_avg:163.31ms
step:207/1530 train_loss:4.0729 train_time:32173ms step_avg:163.31ms
step:208/1530 train_loss:4.0925 train_time:32335ms step_avg:163.31ms
step:209/1530 train_loss:4.2363 train_time:32497ms step_avg:163.30ms
step:210/1530 train_loss:4.1827 train_time:32659ms step_avg:163.30ms
step:211/1530 train_loss:4.0599 train_time:32823ms step_avg:163.30ms
step:212/1530 train_loss:4.1241 train_time:32985ms step_avg:163.29ms
step:213/1530 train_loss:4.0533 train_time:33149ms step_avg:163.30ms
step:214/1530 train_loss:4.1121 train_time:33311ms step_avg:163.29ms
step:215/1530 train_loss:3.9554 train_time:33474ms step_avg:163.29ms
step:216/1530 train_loss:3.9950 train_time:33636ms step_avg:163.28ms
step:217/1530 train_loss:4.0130 train_time:33799ms step_avg:163.28ms
step:218/1530 train_loss:4.0781 train_time:33962ms step_avg:163.28ms
step:219/1530 train_loss:4.0740 train_time:34125ms step_avg:163.28ms
step:220/1530 train_loss:4.0793 train_time:34289ms step_avg:163.28ms
step:221/1530 train_loss:4.0976 train_time:34452ms step_avg:163.28ms
step:222/1530 train_loss:4.0014 train_time:34614ms step_avg:163.27ms
step:223/1530 train_loss:3.9897 train_time:34777ms step_avg:163.27ms
step:224/1530 train_loss:4.2989 train_time:34941ms step_avg:163.27ms
step:225/1530 train_loss:3.9106 train_time:35104ms step_avg:163.27ms
step:226/1530 train_loss:3.9846 train_time:35268ms step_avg:163.28ms
step:227/1530 train_loss:3.9664 train_time:35431ms step_avg:163.28ms
step:228/1530 train_loss:4.1412 train_time:35595ms step_avg:163.28ms
step:229/1530 train_loss:3.9253 train_time:35762ms step_avg:163.29ms
step:230/1530 train_loss:4.0419 train_time:35928ms step_avg:163.31ms
step:231/1530 train_loss:3.8973 train_time:36094ms step_avg:163.32ms
step:232/1530 train_loss:3.9599 train_time:36261ms step_avg:163.34ms
step:233/1530 train_loss:4.0903 train_time:36427ms step_avg:163.35ms
step:234/1530 train_loss:4.0267 train_time:36594ms step_avg:163.37ms
step:235/1530 train_loss:3.8923 train_time:36761ms step_avg:163.38ms
step:236/1530 train_loss:4.0803 train_time:36928ms step_avg:163.40ms
step:237/1530 train_loss:4.0816 train_time:37093ms step_avg:163.41ms
step:238/1530 train_loss:3.9430 train_time:37260ms step_avg:163.42ms
step:239/1530 train_loss:4.0746 train_time:37427ms step_avg:163.44ms
step:240/1530 train_loss:4.1133 train_time:37593ms step_avg:163.45ms
step:241/1530 train_loss:3.9674 train_time:37759ms step_avg:163.46ms
step:242/1530 train_loss:4.1349 train_time:37925ms step_avg:163.47ms
step:243/1530 train_loss:4.0098 train_time:38091ms step_avg:163.48ms
step:244/1530 train_loss:4.0783 train_time:38257ms step_avg:163.49ms
step:245/1530 train_loss:4.1403 train_time:38424ms step_avg:163.51ms
step:246/1530 train_loss:4.0526 train_time:38590ms step_avg:163.52ms
step:247/1530 train_loss:3.9994 train_time:38757ms step_avg:163.53ms
step:248/1530 train_loss:4.0984 train_time:38923ms step_avg:163.54ms
step:249/1530 train_loss:3.9144 train_time:39089ms step_avg:163.55ms
step:250/1530 train_loss:3.9748 train_time:39255ms step_avg:163.56ms
step:250/1530 val_loss:4.0083 train_time:39302ms step_avg:163.76ms
step:251/1530 train_loss:4.0798 train_time:39424ms step_avg:163.58ms
step:252/1530 train_loss:4.1618 train_time:39591ms step_avg:163.60ms
step:253/1530 train_loss:3.9231 train_time:39756ms step_avg:163.61ms
step:254/1530 train_loss:3.8791 train_time:39924ms step_avg:163.62ms
step:255/1530 train_loss:4.0785 train_time:40089ms step_avg:163.63ms
step:256/1530 train_loss:3.9899 train_time:40255ms step_avg:163.64ms
step:257/1530 train_loss:3.9917 train_time:40421ms step_avg:163.65ms
step:258/1530 train_loss:3.9860 train_time:40587ms step_avg:163.66ms
step:259/1530 train_loss:4.0237 train_time:40753ms step_avg:163.67ms
step:260/1530 train_loss:4.0578 train_time:40920ms step_avg:163.68ms
step:261/1530 train_loss:4.0201 train_time:41087ms step_avg:163.69ms
step:262/1530 train_loss:3.9914 train_time:41253ms step_avg:163.70ms
step:263/1530 train_loss:3.8893 train_time:41420ms step_avg:163.71ms
step:264/1530 train_loss:3.9781 train_time:41586ms step_avg:163.72ms
step:265/1530 train_loss:3.8683 train_time:41752ms step_avg:163.73ms
step:266/1530 train_loss:3.9232 train_time:41917ms step_avg:163.74ms
step:267/1530 train_loss:3.9371 train_time:42084ms step_avg:163.75ms
step:268/1530 train_loss:3.9595 train_time:42250ms step_avg:163.76ms
step:269/1530 train_loss:3.8584 train_time:42416ms step_avg:163.77ms
step:270/1530 train_loss:4.0943 train_time:42583ms step_avg:163.78ms
step:271/1530 train_loss:3.9706 train_time:42749ms step_avg:163.79ms
step:272/1530 train_loss:3.9258 train_time:42914ms step_avg:163.79ms
step:273/1530 train_loss:3.9367 train_time:43079ms step_avg:163.80ms
step:274/1530 train_loss:4.0341 train_time:43246ms step_avg:163.81ms
step:275/1530 train_loss:4.0550 train_time:43412ms step_avg:163.82ms
step:276/1530 train_loss:4.2278 train_time:43578ms step_avg:163.83ms
step:277/1530 train_loss:4.0262 train_time:43743ms step_avg:163.83ms
step:278/1530 train_loss:4.0819 train_time:43910ms step_avg:163.84ms
step:279/1530 train_loss:3.9960 train_time:44075ms step_avg:163.85ms
step:280/1530 train_loss:4.1766 train_time:44243ms step_avg:163.86ms
step:281/1530 train_loss:3.9736 train_time:44410ms step_avg:163.87ms
step:282/1530 train_loss:3.9519 train_time:44576ms step_avg:163.88ms
step:283/1530 train_loss:3.9133 train_time:44742ms step_avg:163.89ms
step:284/1530 train_loss:4.0482 train_time:44909ms step_avg:163.90ms
step:285/1530 train_loss:4.0627 train_time:45074ms step_avg:163.90ms
step:286/1530 train_loss:4.0901 train_time:45239ms step_avg:163.91ms
step:287/1530 train_loss:3.9051 train_time:45404ms step_avg:163.91ms
step:288/1530 train_loss:4.0136 train_time:45568ms step_avg:163.91ms
step:289/1530 train_loss:3.8741 train_time:45734ms step_avg:163.92ms
step:290/1530 train_loss:3.8560 train_time:45900ms step_avg:163.93ms
step:291/1530 train_loss:3.9086 train_time:46066ms step_avg:163.94ms
step:292/1530 train_loss:3.8641 train_time:46231ms step_avg:163.94ms
step:293/1530 train_loss:3.9003 train_time:46396ms step_avg:163.94ms
step:294/1530 train_loss:3.9372 train_time:46562ms step_avg:163.95ms
step:295/1530 train_loss:3.8295 train_time:46727ms step_avg:163.95ms
step:296/1530 train_loss:3.8594 train_time:46892ms step_avg:163.96ms
step:297/1530 train_loss:3.8622 train_time:47059ms step_avg:163.97ms
step:298/1530 train_loss:3.9707 train_time:47225ms step_avg:163.97ms
step:299/1530 train_loss:3.8220 train_time:47389ms step_avg:163.98ms
step:300/1530 train_loss:3.9681 train_time:47555ms step_avg:163.98ms
step:301/1530 train_loss:3.9559 train_time:47721ms step_avg:163.99ms
step:302/1530 train_loss:3.9300 train_time:47886ms step_avg:163.99ms
step:303/1530 train_loss:3.9731 train_time:48051ms step_avg:164.00ms
step:304/1530 train_loss:3.9669 train_time:48216ms step_avg:164.00ms
step:305/1530 train_loss:4.4582 train_time:48382ms step_avg:164.01ms
step:306/1530 train_loss:3.9353 train_time:48547ms step_avg:164.01ms
step:307/1530 train_loss:3.8339 train_time:48712ms step_avg:164.01ms
step:308/1530 train_loss:3.9782 train_time:48878ms step_avg:164.02ms
step:309/1530 train_loss:3.8641 train_time:49043ms step_avg:164.02ms
step:310/1530 train_loss:4.0795 train_time:49210ms step_avg:164.03ms
step:311/1530 train_loss:3.9215 train_time:49374ms step_avg:164.03ms
step:312/1530 train_loss:3.8620 train_time:49538ms step_avg:164.03ms
step:313/1530 train_loss:3.9322 train_time:49705ms step_avg:164.04ms
step:314/1530 train_loss:4.0650 train_time:49869ms step_avg:164.04ms
step:315/1530 train_loss:3.9361 train_time:50034ms step_avg:164.04ms
step:316/1530 train_loss:3.7893 train_time:50200ms step_avg:164.05ms
step:317/1530 train_loss:3.8769 train_time:50366ms step_avg:164.06ms
step:318/1530 train_loss:3.9217 train_time:50532ms step_avg:164.07ms
step:319/1530 train_loss:3.8979 train_time:50698ms step_avg:164.07ms
step:320/1530 train_loss:4.0107 train_time:50863ms step_avg:164.08ms
step:321/1530 train_loss:3.9556 train_time:51028ms step_avg:164.08ms
step:322/1530 train_loss:3.9253 train_time:51193ms step_avg:164.08ms
step:323/1530 train_loss:4.0091 train_time:51359ms step_avg:164.09ms
step:324/1530 train_loss:3.9363 train_time:51526ms step_avg:164.09ms
step:325/1530 train_loss:4.0130 train_time:51691ms step_avg:164.10ms
step:326/1530 train_loss:3.8878 train_time:51855ms step_avg:164.10ms
step:327/1530 train_loss:4.3876 train_time:52023ms step_avg:164.11ms
step:328/1530 train_loss:4.0706 train_time:52188ms step_avg:164.11ms
step:329/1530 train_loss:3.8007 train_time:52352ms step_avg:164.11ms
step:330/1530 train_loss:3.7509 train_time:52519ms step_avg:164.12ms
step:331/1530 train_loss:3.9746 train_time:52684ms step_avg:164.13ms
step:332/1530 train_loss:3.9135 train_time:52850ms step_avg:164.13ms
step:333/1530 train_loss:3.8887 train_time:53016ms step_avg:164.14ms
step:334/1530 train_loss:3.8424 train_time:53181ms step_avg:164.14ms
step:335/1530 train_loss:4.0123 train_time:53347ms step_avg:164.15ms
step:336/1530 train_loss:3.9579 train_time:53512ms step_avg:164.15ms
step:337/1530 train_loss:4.4213 train_time:53677ms step_avg:164.15ms
step:338/1530 train_loss:3.9391 train_time:53843ms step_avg:164.15ms
step:339/1530 train_loss:3.8719 train_time:54008ms step_avg:164.16ms
step:340/1530 train_loss:3.9321 train_time:54174ms step_avg:164.16ms
step:341/1530 train_loss:3.8557 train_time:54341ms step_avg:164.17ms
step:342/1530 train_loss:3.8103 train_time:54508ms step_avg:164.18ms
step:343/1530 train_loss:3.8377 train_time:54677ms step_avg:164.19ms
step:344/1530 train_loss:3.9905 train_time:54845ms step_avg:164.21ms
step:345/1530 train_loss:3.8149 train_time:55013ms step_avg:164.22ms
step:346/1530 train_loss:3.7648 train_time:55180ms step_avg:164.23ms
step:347/1530 train_loss:3.7976 train_time:55348ms step_avg:164.24ms
step:348/1530 train_loss:3.8649 train_time:55516ms step_avg:164.25ms
step:349/1530 train_loss:3.8321 train_time:55685ms step_avg:164.26ms
step:350/1530 train_loss:3.5670 train_time:55852ms step_avg:164.27ms
step:351/1530 train_loss:3.8269 train_time:56021ms step_avg:164.28ms
step:352/1530 train_loss:4.1798 train_time:56189ms step_avg:164.30ms
step:353/1530 train_loss:3.6553 train_time:56357ms step_avg:164.31ms
step:354/1530 train_loss:3.9222 train_time:56525ms step_avg:164.32ms
step:355/1530 train_loss:3.7842 train_time:56692ms step_avg:164.33ms
step:356/1530 train_loss:3.8805 train_time:56862ms step_avg:164.34ms
step:357/1530 train_loss:3.7713 train_time:57030ms step_avg:164.35ms
step:358/1530 train_loss:3.8652 train_time:57199ms step_avg:164.36ms
step:359/1530 train_loss:3.7723 train_time:57368ms step_avg:164.38ms
step:360/1530 train_loss:3.4382 train_time:57538ms step_avg:164.39ms
step:361/1530 train_loss:4.0225 train_time:57707ms step_avg:164.41ms
step:362/1530 train_loss:3.9173 train_time:57874ms step_avg:164.41ms
step:363/1530 train_loss:3.8408 train_time:58042ms step_avg:164.43ms
step:364/1530 train_loss:3.7464 train_time:58210ms step_avg:164.44ms
step:365/1530 train_loss:3.9132 train_time:58379ms step_avg:164.45ms
step:366/1530 train_loss:3.8585 train_time:58548ms step_avg:164.46ms
step:367/1530 train_loss:3.8598 train_time:58716ms step_avg:164.47ms
step:368/1530 train_loss:3.8484 train_time:58885ms step_avg:164.48ms
step:369/1530 train_loss:3.7448 train_time:59053ms step_avg:164.49ms
step:370/1530 train_loss:3.8761 train_time:59221ms step_avg:164.50ms
step:371/1530 train_loss:3.7308 train_time:59389ms step_avg:164.51ms
step:372/1530 train_loss:3.6983 train_time:59557ms step_avg:164.52ms
step:373/1530 train_loss:3.9118 train_time:59726ms step_avg:164.53ms
step:374/1530 train_loss:3.8257 train_time:59893ms step_avg:164.54ms
step:375/1530 train_loss:3.7965 train_time:60062ms step_avg:164.55ms
step:375/1530 val_loss:3.8242 train_time:60109ms step_avg:164.68ms