-
Notifications
You must be signed in to change notification settings - Fork 183
/
6b244191-77a3-41ea-a314-82c6a9184b31.txt
2165 lines (2092 loc) · 134 KB
/
6b244191-77a3-41ea-a314-82c6a9184b31.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:19:11 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 37C P0 96W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 122W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 29C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31700ms step_avg:nanms
step:2/1530 train_loss:10.0712 train_time:31810ms step_avg:nanms
step:3/1530 train_loss:8.3189 train_time:31971ms step_avg:nanms
step:4/1530 train_loss:7.6580 train_time:32130ms step_avg:nanms
step:5/1530 train_loss:7.5266 train_time:32291ms step_avg:nanms
step:6/1530 train_loss:7.0569 train_time:32452ms step_avg:nanms
step:7/1530 train_loss:7.1731 train_time:32612ms step_avg:nanms
step:8/1530 train_loss:6.7722 train_time:32773ms step_avg:nanms
step:9/1530 train_loss:6.6751 train_time:32933ms step_avg:nanms
step:10/1530 train_loss:6.6186 train_time:33093ms step_avg:nanms
step:11/1530 train_loss:6.4493 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3193 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2083 train_time:435ms step_avg:145.11ms
step:14/1530 train_loss:6.1643 train_time:594ms step_avg:148.53ms
step:15/1530 train_loss:6.1454 train_time:755ms step_avg:151.00ms
step:16/1530 train_loss:6.1973 train_time:916ms step_avg:152.65ms
step:17/1530 train_loss:6.1793 train_time:1076ms step_avg:153.71ms
step:18/1530 train_loss:5.9431 train_time:1237ms step_avg:154.61ms
step:19/1530 train_loss:5.9657 train_time:1397ms step_avg:155.20ms
step:20/1530 train_loss:5.6992 train_time:1558ms step_avg:155.78ms
step:21/1530 train_loss:5.9628 train_time:1719ms step_avg:156.23ms
step:22/1530 train_loss:6.1842 train_time:1880ms step_avg:156.65ms
step:23/1530 train_loss:5.8591 train_time:2040ms step_avg:156.91ms
step:24/1530 train_loss:6.0422 train_time:2201ms step_avg:157.18ms
step:25/1530 train_loss:5.6847 train_time:2362ms step_avg:157.46ms
step:26/1530 train_loss:5.5936 train_time:2523ms step_avg:157.69ms
step:27/1530 train_loss:5.7594 train_time:2683ms step_avg:157.82ms
step:28/1530 train_loss:5.4221 train_time:2844ms step_avg:158.00ms
step:29/1530 train_loss:5.6559 train_time:3003ms step_avg:158.08ms
step:30/1530 train_loss:5.4636 train_time:3163ms step_avg:158.14ms
step:31/1530 train_loss:5.4368 train_time:3324ms step_avg:158.27ms
step:32/1530 train_loss:5.2958 train_time:3484ms step_avg:158.35ms
step:33/1530 train_loss:5.5847 train_time:3645ms step_avg:158.48ms
step:34/1530 train_loss:5.5105 train_time:3805ms step_avg:158.55ms
step:35/1530 train_loss:5.6142 train_time:3966ms step_avg:158.62ms
step:36/1530 train_loss:5.5516 train_time:4127ms step_avg:158.73ms
step:37/1530 train_loss:5.4632 train_time:4287ms step_avg:158.77ms
step:38/1530 train_loss:5.3200 train_time:4449ms step_avg:158.90ms
step:39/1530 train_loss:5.3236 train_time:4610ms step_avg:158.96ms
step:40/1530 train_loss:5.2617 train_time:4770ms step_avg:159.01ms
step:41/1530 train_loss:5.2323 train_time:4931ms step_avg:159.07ms
step:42/1530 train_loss:5.1701 train_time:5092ms step_avg:159.11ms
step:43/1530 train_loss:5.2653 train_time:5252ms step_avg:159.17ms
step:44/1530 train_loss:5.2457 train_time:5413ms step_avg:159.20ms
step:45/1530 train_loss:5.3762 train_time:5573ms step_avg:159.23ms
step:46/1530 train_loss:5.1711 train_time:5734ms step_avg:159.28ms
step:47/1530 train_loss:5.0591 train_time:5894ms step_avg:159.29ms
step:48/1530 train_loss:5.1994 train_time:6055ms step_avg:159.33ms
step:49/1530 train_loss:5.1457 train_time:6214ms step_avg:159.34ms
step:50/1530 train_loss:5.2598 train_time:6375ms step_avg:159.38ms
step:51/1530 train_loss:5.1425 train_time:6536ms step_avg:159.41ms
step:52/1530 train_loss:5.0354 train_time:6695ms step_avg:159.41ms
step:53/1530 train_loss:5.1631 train_time:6856ms step_avg:159.44ms
step:54/1530 train_loss:5.0209 train_time:7016ms step_avg:159.46ms
step:55/1530 train_loss:5.4221 train_time:7177ms step_avg:159.48ms
step:56/1530 train_loss:5.0301 train_time:7338ms step_avg:159.51ms
step:57/1530 train_loss:4.8777 train_time:7497ms step_avg:159.52ms
step:58/1530 train_loss:5.0385 train_time:7658ms step_avg:159.54ms
step:59/1530 train_loss:5.0233 train_time:7818ms step_avg:159.55ms
step:60/1530 train_loss:5.1404 train_time:7978ms step_avg:159.56ms
step:61/1530 train_loss:4.8576 train_time:8138ms step_avg:159.58ms
step:62/1530 train_loss:4.9707 train_time:8299ms step_avg:159.59ms
step:63/1530 train_loss:4.9647 train_time:8458ms step_avg:159.59ms
step:64/1530 train_loss:4.9741 train_time:8619ms step_avg:159.61ms
step:65/1530 train_loss:4.8013 train_time:8779ms step_avg:159.62ms
step:66/1530 train_loss:4.9176 train_time:8939ms step_avg:159.63ms
step:67/1530 train_loss:4.8238 train_time:9099ms step_avg:159.63ms
step:68/1530 train_loss:5.1131 train_time:9259ms step_avg:159.63ms
step:69/1530 train_loss:4.7514 train_time:9420ms step_avg:159.65ms
step:70/1530 train_loss:4.8503 train_time:9579ms step_avg:159.65ms
step:71/1530 train_loss:4.9771 train_time:9739ms step_avg:159.66ms
step:72/1530 train_loss:4.8860 train_time:9899ms step_avg:159.67ms
step:73/1530 train_loss:4.7690 train_time:10060ms step_avg:159.68ms
step:74/1530 train_loss:4.9002 train_time:10220ms step_avg:159.68ms
step:75/1530 train_loss:4.8690 train_time:10380ms step_avg:159.69ms
step:76/1530 train_loss:4.7941 train_time:10541ms step_avg:159.71ms
step:77/1530 train_loss:4.9041 train_time:10700ms step_avg:159.71ms
step:78/1530 train_loss:5.0988 train_time:10861ms step_avg:159.72ms
step:79/1530 train_loss:4.8210 train_time:11022ms step_avg:159.74ms
step:80/1530 train_loss:4.8638 train_time:11183ms step_avg:159.76ms
step:81/1530 train_loss:4.6510 train_time:11344ms step_avg:159.78ms
step:82/1530 train_loss:4.8158 train_time:11504ms step_avg:159.78ms
step:83/1530 train_loss:4.7751 train_time:11665ms step_avg:159.79ms
step:84/1530 train_loss:4.7739 train_time:11825ms step_avg:159.80ms
step:85/1530 train_loss:4.6251 train_time:11984ms step_avg:159.79ms
step:86/1530 train_loss:4.8415 train_time:12146ms step_avg:159.82ms
step:87/1530 train_loss:4.7513 train_time:12307ms step_avg:159.83ms
step:88/1530 train_loss:4.7527 train_time:12467ms step_avg:159.83ms
step:89/1530 train_loss:4.7185 train_time:12627ms step_avg:159.84ms
step:90/1530 train_loss:4.6583 train_time:12788ms step_avg:159.85ms
step:91/1530 train_loss:4.6366 train_time:12950ms step_avg:159.88ms
step:92/1530 train_loss:4.7982 train_time:13111ms step_avg:159.88ms
step:93/1530 train_loss:4.6244 train_time:13272ms step_avg:159.90ms
step:94/1530 train_loss:4.6435 train_time:13432ms step_avg:159.91ms
step:95/1530 train_loss:4.6931 train_time:13592ms step_avg:159.91ms
step:96/1530 train_loss:4.5841 train_time:13754ms step_avg:159.93ms
step:97/1530 train_loss:4.6452 train_time:13914ms step_avg:159.93ms
step:98/1530 train_loss:4.5891 train_time:14074ms step_avg:159.93ms
step:99/1530 train_loss:4.6667 train_time:14235ms step_avg:159.94ms
step:100/1530 train_loss:4.6730 train_time:14395ms step_avg:159.94ms
step:101/1530 train_loss:4.5283 train_time:14556ms step_avg:159.95ms
step:102/1530 train_loss:4.7004 train_time:14716ms step_avg:159.95ms
step:103/1530 train_loss:4.5829 train_time:14876ms step_avg:159.96ms
step:104/1530 train_loss:4.5374 train_time:15038ms step_avg:159.98ms
step:105/1530 train_loss:4.5638 train_time:15197ms step_avg:159.97ms
step:106/1530 train_loss:4.6033 train_time:15358ms step_avg:159.98ms
step:107/1530 train_loss:4.4989 train_time:15518ms step_avg:159.98ms
step:108/1530 train_loss:4.3547 train_time:15678ms step_avg:159.98ms
step:109/1530 train_loss:4.4911 train_time:15839ms step_avg:159.99ms
step:110/1530 train_loss:4.5133 train_time:15999ms step_avg:159.99ms
step:111/1530 train_loss:4.4305 train_time:16159ms step_avg:159.99ms
step:112/1530 train_loss:4.5893 train_time:16320ms step_avg:160.00ms
step:113/1530 train_loss:4.5020 train_time:16481ms step_avg:160.01ms
step:114/1530 train_loss:4.3681 train_time:16642ms step_avg:160.02ms
step:115/1530 train_loss:4.5105 train_time:16804ms step_avg:160.04ms
step:116/1530 train_loss:4.4765 train_time:16968ms step_avg:160.08ms
step:117/1530 train_loss:4.3820 train_time:17133ms step_avg:160.12ms
step:118/1530 train_loss:4.5929 train_time:17296ms step_avg:160.14ms
step:119/1530 train_loss:4.4578 train_time:17460ms step_avg:160.18ms
step:120/1530 train_loss:4.3308 train_time:17625ms step_avg:160.22ms
step:121/1530 train_loss:4.3003 train_time:17789ms step_avg:160.26ms
step:122/1530 train_loss:4.4568 train_time:17954ms step_avg:160.31ms
step:123/1530 train_loss:4.2898 train_time:18117ms step_avg:160.33ms
step:124/1530 train_loss:4.5889 train_time:18280ms step_avg:160.36ms
step:125/1530 train_loss:4.4705 train_time:18445ms step_avg:160.39ms
step:125/1530 val_loss:4.4100 train_time:18492ms step_avg:160.80ms
step:126/1530 train_loss:4.4242 train_time:18613ms step_avg:160.45ms
step:127/1530 train_loss:4.4361 train_time:18777ms step_avg:160.48ms
step:128/1530 train_loss:4.3753 train_time:18941ms step_avg:160.51ms
step:129/1530 train_loss:4.6770 train_time:19104ms step_avg:160.54ms
step:130/1530 train_loss:4.3588 train_time:19268ms step_avg:160.57ms
step:131/1530 train_loss:4.3871 train_time:19433ms step_avg:160.60ms
step:132/1530 train_loss:4.3478 train_time:19596ms step_avg:160.62ms
step:133/1530 train_loss:4.4543 train_time:19759ms step_avg:160.64ms
step:134/1530 train_loss:4.2747 train_time:19924ms step_avg:160.67ms
step:135/1530 train_loss:4.4699 train_time:20089ms step_avg:160.71ms
step:136/1530 train_loss:4.2281 train_time:20253ms step_avg:160.74ms
step:137/1530 train_loss:4.3742 train_time:20416ms step_avg:160.76ms
step:138/1530 train_loss:4.2946 train_time:20580ms step_avg:160.78ms
step:139/1530 train_loss:4.3925 train_time:20744ms step_avg:160.81ms
step:140/1530 train_loss:4.4700 train_time:20910ms step_avg:160.84ms
step:141/1530 train_loss:4.3150 train_time:21073ms step_avg:160.86ms
step:142/1530 train_loss:4.3124 train_time:21237ms step_avg:160.88ms
step:143/1530 train_loss:4.2564 train_time:21401ms step_avg:160.91ms
step:144/1530 train_loss:4.3530 train_time:21566ms step_avg:160.94ms
step:145/1530 train_loss:4.3077 train_time:21731ms step_avg:160.97ms
step:146/1530 train_loss:4.1713 train_time:21894ms step_avg:160.99ms
step:147/1530 train_loss:4.3229 train_time:22058ms step_avg:161.01ms
step:148/1530 train_loss:4.3511 train_time:22222ms step_avg:161.03ms
step:149/1530 train_loss:4.2912 train_time:22386ms step_avg:161.05ms
step:150/1530 train_loss:4.4345 train_time:22550ms step_avg:161.07ms
step:151/1530 train_loss:4.2782 train_time:22715ms step_avg:161.10ms
step:152/1530 train_loss:4.2828 train_time:22878ms step_avg:161.11ms
step:153/1530 train_loss:4.3597 train_time:23041ms step_avg:161.12ms
step:154/1530 train_loss:4.3660 train_time:23205ms step_avg:161.15ms
step:155/1530 train_loss:4.2736 train_time:23370ms step_avg:161.17ms
step:156/1530 train_loss:4.3512 train_time:23533ms step_avg:161.19ms
step:157/1530 train_loss:4.4102 train_time:23696ms step_avg:161.20ms
step:158/1530 train_loss:4.2496 train_time:23859ms step_avg:161.21ms
step:159/1530 train_loss:4.3079 train_time:24024ms step_avg:161.24ms
step:160/1530 train_loss:4.1286 train_time:24189ms step_avg:161.26ms
step:161/1530 train_loss:4.3402 train_time:24352ms step_avg:161.27ms
step:162/1530 train_loss:4.3522 train_time:24516ms step_avg:161.29ms
step:163/1530 train_loss:4.3343 train_time:24679ms step_avg:161.30ms
step:164/1530 train_loss:4.1767 train_time:24843ms step_avg:161.32ms
step:165/1530 train_loss:4.2865 train_time:25008ms step_avg:161.34ms
step:166/1530 train_loss:4.3334 train_time:25171ms step_avg:161.35ms
step:167/1530 train_loss:4.1928 train_time:25334ms step_avg:161.36ms
step:168/1530 train_loss:4.2739 train_time:25497ms step_avg:161.38ms
step:169/1530 train_loss:4.1495 train_time:25662ms step_avg:161.39ms
step:170/1530 train_loss:4.0222 train_time:25829ms step_avg:161.43ms
step:171/1530 train_loss:4.1979 train_time:25993ms step_avg:161.45ms
step:172/1530 train_loss:4.2049 train_time:26155ms step_avg:161.45ms
step:173/1530 train_loss:4.2582 train_time:26319ms step_avg:161.46ms
step:174/1530 train_loss:4.4201 train_time:26482ms step_avg:161.47ms
step:175/1530 train_loss:4.2362 train_time:26644ms step_avg:161.48ms
step:176/1530 train_loss:4.0884 train_time:26806ms step_avg:161.48ms
step:177/1530 train_loss:4.0647 train_time:26969ms step_avg:161.49ms
step:178/1530 train_loss:4.1805 train_time:27132ms step_avg:161.50ms
step:179/1530 train_loss:4.1231 train_time:27295ms step_avg:161.51ms
step:180/1530 train_loss:4.1086 train_time:27457ms step_avg:161.51ms
step:181/1530 train_loss:4.2923 train_time:27620ms step_avg:161.52ms
step:182/1530 train_loss:4.1428 train_time:27782ms step_avg:161.52ms
step:183/1530 train_loss:4.1197 train_time:27945ms step_avg:161.53ms
step:184/1530 train_loss:4.1269 train_time:28107ms step_avg:161.54ms
step:185/1530 train_loss:4.2000 train_time:28269ms step_avg:161.54ms
step:186/1530 train_loss:4.1650 train_time:28433ms step_avg:161.55ms
step:187/1530 train_loss:4.2386 train_time:28595ms step_avg:161.55ms
step:188/1530 train_loss:4.1664 train_time:28892ms step_avg:162.32ms
step:189/1530 train_loss:4.1125 train_time:29224ms step_avg:163.26ms
step:190/1530 train_loss:4.2029 train_time:29386ms step_avg:163.26ms
step:191/1530 train_loss:4.0841 train_time:29550ms step_avg:163.26ms
step:192/1530 train_loss:4.0201 train_time:29712ms step_avg:163.26ms
step:193/1530 train_loss:4.2478 train_time:29874ms step_avg:163.25ms
step:194/1530 train_loss:4.1649 train_time:30037ms step_avg:163.24ms
step:195/1530 train_loss:4.3449 train_time:30200ms step_avg:163.24ms
step:196/1530 train_loss:4.1703 train_time:30363ms step_avg:163.24ms
step:197/1530 train_loss:4.0353 train_time:30527ms step_avg:163.25ms
step:198/1530 train_loss:4.1732 train_time:30690ms step_avg:163.24ms
step:199/1530 train_loss:4.0237 train_time:30852ms step_avg:163.24ms
step:200/1530 train_loss:4.1119 train_time:31014ms step_avg:163.23ms
step:201/1530 train_loss:3.9941 train_time:31177ms step_avg:163.23ms
step:202/1530 train_loss:4.2469 train_time:31339ms step_avg:163.23ms
step:203/1530 train_loss:4.0618 train_time:31504ms step_avg:163.23ms
step:204/1530 train_loss:4.1826 train_time:31667ms step_avg:163.23ms
step:205/1530 train_loss:4.2389 train_time:31831ms step_avg:163.23ms
step:206/1530 train_loss:3.9401 train_time:31994ms step_avg:163.23ms
step:207/1530 train_loss:4.0718 train_time:32156ms step_avg:163.23ms
step:208/1530 train_loss:4.1032 train_time:32318ms step_avg:163.22ms
step:209/1530 train_loss:4.2417 train_time:32481ms step_avg:163.22ms
step:210/1530 train_loss:4.1769 train_time:32645ms step_avg:163.22ms
step:211/1530 train_loss:4.0573 train_time:32808ms step_avg:163.23ms
step:212/1530 train_loss:4.1186 train_time:32971ms step_avg:163.22ms
step:213/1530 train_loss:4.0422 train_time:33133ms step_avg:163.22ms
step:214/1530 train_loss:4.1053 train_time:33295ms step_avg:163.21ms
step:215/1530 train_loss:3.9460 train_time:33457ms step_avg:163.20ms
step:216/1530 train_loss:3.9967 train_time:33620ms step_avg:163.21ms
step:217/1530 train_loss:3.9996 train_time:33783ms step_avg:163.20ms
step:218/1530 train_loss:4.0773 train_time:33947ms step_avg:163.21ms
step:219/1530 train_loss:4.0617 train_time:34111ms step_avg:163.21ms
step:220/1530 train_loss:4.0785 train_time:34273ms step_avg:163.20ms
step:221/1530 train_loss:4.0907 train_time:34435ms step_avg:163.20ms
step:222/1530 train_loss:3.9920 train_time:34598ms step_avg:163.20ms
step:223/1530 train_loss:3.9823 train_time:34760ms step_avg:163.19ms
step:224/1530 train_loss:4.2900 train_time:34922ms step_avg:163.19ms
step:225/1530 train_loss:3.9151 train_time:35086ms step_avg:163.19ms
step:226/1530 train_loss:3.9880 train_time:35251ms step_avg:163.20ms
step:227/1530 train_loss:3.9847 train_time:35413ms step_avg:163.19ms
step:228/1530 train_loss:4.1318 train_time:35577ms step_avg:163.20ms
step:229/1530 train_loss:3.9117 train_time:35742ms step_avg:163.21ms
step:230/1530 train_loss:4.0384 train_time:35908ms step_avg:163.22ms
step:231/1530 train_loss:3.8976 train_time:36073ms step_avg:163.23ms
step:232/1530 train_loss:3.9657 train_time:36239ms step_avg:163.24ms
step:233/1530 train_loss:4.0811 train_time:36406ms step_avg:163.25ms
step:234/1530 train_loss:4.0195 train_time:36571ms step_avg:163.26ms
step:235/1530 train_loss:3.8993 train_time:36738ms step_avg:163.28ms
step:236/1530 train_loss:4.0823 train_time:36903ms step_avg:163.29ms
step:237/1530 train_loss:4.0659 train_time:37069ms step_avg:163.30ms
step:238/1530 train_loss:3.9388 train_time:37235ms step_avg:163.31ms
step:239/1530 train_loss:4.0770 train_time:37401ms step_avg:163.32ms
step:240/1530 train_loss:4.1066 train_time:37568ms step_avg:163.34ms
step:241/1530 train_loss:3.9592 train_time:37733ms step_avg:163.35ms
step:242/1530 train_loss:4.1279 train_time:37899ms step_avg:163.36ms
step:243/1530 train_loss:4.0000 train_time:38065ms step_avg:163.37ms
step:244/1530 train_loss:4.0752 train_time:38232ms step_avg:163.39ms
step:245/1530 train_loss:4.1367 train_time:38397ms step_avg:163.39ms
step:246/1530 train_loss:4.0480 train_time:38562ms step_avg:163.40ms
step:247/1530 train_loss:3.9930 train_time:38731ms step_avg:163.42ms
step:248/1530 train_loss:4.0896 train_time:38896ms step_avg:163.43ms
step:249/1530 train_loss:3.9079 train_time:39062ms step_avg:163.44ms
step:250/1530 train_loss:3.9734 train_time:39230ms step_avg:163.46ms
step:250/1530 val_loss:3.9996 train_time:39277ms step_avg:163.65ms
step:251/1530 train_loss:4.0678 train_time:39397ms step_avg:163.47ms
step:252/1530 train_loss:4.1550 train_time:39563ms step_avg:163.49ms
step:253/1530 train_loss:3.9228 train_time:39731ms step_avg:163.50ms
step:254/1530 train_loss:3.8780 train_time:39898ms step_avg:163.51ms
step:255/1530 train_loss:4.0721 train_time:40063ms step_avg:163.52ms
step:256/1530 train_loss:3.9778 train_time:40230ms step_avg:163.53ms
step:257/1530 train_loss:3.9846 train_time:40396ms step_avg:163.54ms
step:258/1530 train_loss:3.9803 train_time:40561ms step_avg:163.55ms
step:259/1530 train_loss:4.0248 train_time:40728ms step_avg:163.57ms
step:260/1530 train_loss:4.0476 train_time:40896ms step_avg:163.58ms
step:261/1530 train_loss:4.0117 train_time:41062ms step_avg:163.59ms
step:262/1530 train_loss:3.9839 train_time:41228ms step_avg:163.60ms
step:263/1530 train_loss:3.8863 train_time:41395ms step_avg:163.62ms
step:264/1530 train_loss:3.9782 train_time:41561ms step_avg:163.63ms
step:265/1530 train_loss:3.8637 train_time:41728ms step_avg:163.64ms
step:266/1530 train_loss:3.9132 train_time:41895ms step_avg:163.65ms
step:267/1530 train_loss:3.9240 train_time:42060ms step_avg:163.66ms
step:268/1530 train_loss:3.9580 train_time:42225ms step_avg:163.66ms
step:269/1530 train_loss:3.8474 train_time:42393ms step_avg:163.68ms
step:270/1530 train_loss:4.0944 train_time:42559ms step_avg:163.69ms
step:271/1530 train_loss:3.9615 train_time:42725ms step_avg:163.70ms
step:272/1530 train_loss:3.9239 train_time:42892ms step_avg:163.71ms
step:273/1530 train_loss:3.9439 train_time:43058ms step_avg:163.72ms
step:274/1530 train_loss:4.0373 train_time:43224ms step_avg:163.73ms
step:275/1530 train_loss:4.0559 train_time:43391ms step_avg:163.74ms
step:276/1530 train_loss:4.2244 train_time:43556ms step_avg:163.75ms
step:277/1530 train_loss:4.0357 train_time:43721ms step_avg:163.75ms
step:278/1530 train_loss:4.0788 train_time:43888ms step_avg:163.76ms
step:279/1530 train_loss:3.9966 train_time:44055ms step_avg:163.77ms
step:280/1530 train_loss:4.1757 train_time:44222ms step_avg:163.78ms
step:281/1530 train_loss:3.9674 train_time:44387ms step_avg:163.79ms
step:282/1530 train_loss:3.9371 train_time:44555ms step_avg:163.81ms
step:283/1530 train_loss:3.9038 train_time:44721ms step_avg:163.81ms
step:284/1530 train_loss:4.0460 train_time:44887ms step_avg:163.82ms
step:285/1530 train_loss:4.0565 train_time:45053ms step_avg:163.83ms
step:286/1530 train_loss:4.0828 train_time:45218ms step_avg:163.83ms
step:287/1530 train_loss:3.8960 train_time:45384ms step_avg:163.84ms
step:288/1530 train_loss:3.9946 train_time:45549ms step_avg:163.85ms
step:289/1530 train_loss:3.8671 train_time:45715ms step_avg:163.85ms
step:290/1530 train_loss:3.8543 train_time:45880ms step_avg:163.86ms
step:291/1530 train_loss:3.8980 train_time:46045ms step_avg:163.86ms
step:292/1530 train_loss:3.8553 train_time:46210ms step_avg:163.86ms
step:293/1530 train_loss:3.8918 train_time:46376ms step_avg:163.87ms
step:294/1530 train_loss:3.9238 train_time:46539ms step_avg:163.87ms
step:295/1530 train_loss:3.8285 train_time:46704ms step_avg:163.87ms
step:296/1530 train_loss:3.8540 train_time:46871ms step_avg:163.88ms
step:297/1530 train_loss:3.8610 train_time:47035ms step_avg:163.89ms
step:298/1530 train_loss:3.9601 train_time:47200ms step_avg:163.89ms
step:299/1530 train_loss:3.8114 train_time:47365ms step_avg:163.89ms
step:300/1530 train_loss:3.9551 train_time:47530ms step_avg:163.90ms
step:301/1530 train_loss:3.9528 train_time:47695ms step_avg:163.90ms
step:302/1530 train_loss:3.9313 train_time:47860ms step_avg:163.90ms
step:303/1530 train_loss:3.9751 train_time:48025ms step_avg:163.91ms
step:304/1530 train_loss:3.9598 train_time:48191ms step_avg:163.92ms
step:305/1530 train_loss:4.4420 train_time:48356ms step_avg:163.92ms
step:306/1530 train_loss:3.9281 train_time:48520ms step_avg:163.92ms
step:307/1530 train_loss:3.8250 train_time:48687ms step_avg:163.93ms
step:308/1530 train_loss:3.9721 train_time:48853ms step_avg:163.94ms
step:309/1530 train_loss:3.8597 train_time:49017ms step_avg:163.94ms
step:310/1530 train_loss:4.0821 train_time:49183ms step_avg:163.94ms
step:311/1530 train_loss:3.9276 train_time:49349ms step_avg:163.95ms
step:312/1530 train_loss:3.8568 train_time:49513ms step_avg:163.95ms
step:313/1530 train_loss:3.9219 train_time:49679ms step_avg:163.96ms
step:314/1530 train_loss:4.0488 train_time:49844ms step_avg:163.96ms
step:315/1530 train_loss:3.9295 train_time:50011ms step_avg:163.97ms
step:316/1530 train_loss:3.7905 train_time:50176ms step_avg:163.97ms
step:317/1530 train_loss:3.8679 train_time:50340ms step_avg:163.97ms
step:318/1530 train_loss:3.9165 train_time:50506ms step_avg:163.98ms
step:319/1530 train_loss:3.8837 train_time:50672ms step_avg:163.99ms
step:320/1530 train_loss:4.0089 train_time:50836ms step_avg:163.99ms
step:321/1530 train_loss:3.9545 train_time:51001ms step_avg:163.99ms
step:322/1530 train_loss:3.9248 train_time:51167ms step_avg:164.00ms
step:323/1530 train_loss:3.9915 train_time:51332ms step_avg:164.00ms
step:324/1530 train_loss:3.9328 train_time:51497ms step_avg:164.00ms
step:325/1530 train_loss:4.0034 train_time:51662ms step_avg:164.01ms
step:326/1530 train_loss:3.8883 train_time:51828ms step_avg:164.01ms
step:327/1530 train_loss:4.3804 train_time:51994ms step_avg:164.02ms
step:328/1530 train_loss:4.0663 train_time:52159ms step_avg:164.02ms
step:329/1530 train_loss:3.7793 train_time:52325ms step_avg:164.03ms
step:330/1530 train_loss:3.7365 train_time:52492ms step_avg:164.04ms
step:331/1530 train_loss:3.9679 train_time:52657ms step_avg:164.04ms
step:332/1530 train_loss:3.9066 train_time:52822ms step_avg:164.04ms
step:333/1530 train_loss:3.8753 train_time:52988ms step_avg:164.05ms
step:334/1530 train_loss:3.8307 train_time:53153ms step_avg:164.05ms
step:335/1530 train_loss:4.0021 train_time:53318ms step_avg:164.06ms
step:336/1530 train_loss:3.9516 train_time:53482ms step_avg:164.05ms
step:337/1530 train_loss:4.4034 train_time:53649ms step_avg:164.07ms
step:338/1530 train_loss:3.9269 train_time:53815ms step_avg:164.07ms
step:339/1530 train_loss:3.8615 train_time:53980ms step_avg:164.07ms
step:340/1530 train_loss:3.9232 train_time:54145ms step_avg:164.08ms
step:341/1530 train_loss:3.8440 train_time:54313ms step_avg:164.09ms
step:342/1530 train_loss:3.8034 train_time:54480ms step_avg:164.10ms
step:343/1530 train_loss:3.8287 train_time:54649ms step_avg:164.11ms
step:344/1530 train_loss:3.9919 train_time:54817ms step_avg:164.12ms
step:345/1530 train_loss:3.8016 train_time:54985ms step_avg:164.13ms
step:346/1530 train_loss:3.7628 train_time:55153ms step_avg:164.15ms
step:347/1530 train_loss:3.7886 train_time:55320ms step_avg:164.15ms
step:348/1530 train_loss:3.8522 train_time:55491ms step_avg:164.18ms
step:349/1530 train_loss:3.8281 train_time:55661ms step_avg:164.19ms
step:350/1530 train_loss:3.5651 train_time:55831ms step_avg:164.21ms
step:351/1530 train_loss:3.8203 train_time:55998ms step_avg:164.22ms
step:352/1530 train_loss:4.1759 train_time:56166ms step_avg:164.23ms
step:353/1530 train_loss:3.6599 train_time:56334ms step_avg:164.24ms
step:354/1530 train_loss:3.9174 train_time:56500ms step_avg:164.25ms
step:355/1530 train_loss:3.7780 train_time:56671ms step_avg:164.26ms
step:356/1530 train_loss:3.8720 train_time:56838ms step_avg:164.27ms
step:357/1530 train_loss:3.7521 train_time:57006ms step_avg:164.28ms
step:358/1530 train_loss:3.8543 train_time:57174ms step_avg:164.29ms
step:359/1530 train_loss:3.7675 train_time:57342ms step_avg:164.30ms
step:360/1530 train_loss:3.4137 train_time:57512ms step_avg:164.32ms
step:361/1530 train_loss:4.0114 train_time:57680ms step_avg:164.33ms
step:362/1530 train_loss:3.9080 train_time:57848ms step_avg:164.34ms
step:363/1530 train_loss:3.8393 train_time:58015ms step_avg:164.35ms
step:364/1530 train_loss:3.7371 train_time:58182ms step_avg:164.36ms
step:365/1530 train_loss:3.9055 train_time:58352ms step_avg:164.37ms
step:366/1530 train_loss:3.8578 train_time:58521ms step_avg:164.38ms
step:367/1530 train_loss:3.8464 train_time:58689ms step_avg:164.40ms
step:368/1530 train_loss:3.8428 train_time:58857ms step_avg:164.40ms
step:369/1530 train_loss:3.7435 train_time:59024ms step_avg:164.41ms
step:370/1530 train_loss:3.8721 train_time:59193ms step_avg:164.42ms
step:371/1530 train_loss:3.7240 train_time:59360ms step_avg:164.43ms
step:372/1530 train_loss:3.6890 train_time:59528ms step_avg:164.44ms
step:373/1530 train_loss:3.9094 train_time:59695ms step_avg:164.45ms
step:374/1530 train_loss:3.8228 train_time:59862ms step_avg:164.46ms
step:375/1530 train_loss:3.7942 train_time:60032ms step_avg:164.47ms
step:375/1530 val_loss:3.8199 train_time:60081ms step_avg:164.61ms