forked from fomalhautb/3D-RETR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
133 lines (110 loc) · 4.85 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import os
from pprint import PrettyPrinter
import numpy as np
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from tqdm import tqdm
from src.data import ShapeNetDataset, ShuffleDataset, transforms, normalize
from src.data.binvox_rw import Voxels
from src.image2voxel import Image2Voxel
from src.utils import load_config
def save_binvox(voxel, dest, translate, scale):
binvox = Voxels(voxel, voxel.shape, translate, scale, 'xyz')
binvox.write(open(dest, 'wb'))
def to_numpy(image):
image.convert("RGB")
return [np.asarray(image, dtype=np.float32) / 255]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train transformer conditioned on image inputs')
parser.add_argument('--annot_path', type=str, required=True,
help='Path to "ShapeNet.json"')
parser.add_argument('--model_path', type=str, required=True,
help='Path to the voxel models')
parser.add_argument('--image_path', type=str, required=True,
help='Path to the input images')
parser.add_argument('--batch_size', type=int, default=8,
help='Batch size for training')
parser.add_argument('--num_workers', type=int, default=8,
help='Number of workers for dataloader')
parser.add_argument('--seed', type=int, default=0,
help='Manual seed for python, numpy and pytorch')
parser.add_argument('--split', type=str, default='val',
help='"train", "test", or "val"')
parser.add_argument("--transformer_config", type=str, default=None,
help='Path to the image2voxel config file')
parser.add_argument("--background", type=int, nargs=3, default=(0, 0, 0),
help='The (R, G, B) color for the image background')
parser.add_argument("--beam", type=int, default=1,
help='Number of beams for generation')
parser.add_argument("--view_num", type=int, default=1,
help='Number of views for the image input')
parser.add_argument("--threshold", type=float, default=0.5,
help='Threshold for deciding voxel occupancy')
parser.add_argument("--predict", action='store_true',
help='Predict and save results')
parser.add_argument("--save_path", type=str, default=None,
help='Path to save the prediction')
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
if args.resume_from_checkpoint is None:
raise ValueError('No checkpoint specified')
pp = PrettyPrinter(indent=4)
pp.pprint(vars(args))
# =================================================================================
pl.seed_everything(args.seed)
image_trans = transforms.Compose([
to_numpy,
transforms.CenterCrop((224, 224), (128, 128)),
transforms.RandomBackground(((240, 240), (240, 240), (240, 240))),
transforms.ToTensor(),
lambda x: x[0],
normalize
])
dataset_params = {
'annot_path': args.annot_path,
'model_path': args.model_path,
'image_path': args.image_path
}
dataset = ShapeNetDataset(
**dataset_params,
image_transforms=image_trans,
split=args.split,
mode='first',
background=args.background,
view_num=args.view_num
)
dataset = ShuffleDataset(dataset)
loader = DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False
)
# =================================================================================
transformer_config = load_config(args.transformer_config)
pp.pprint(transformer_config)
model = Image2Voxel.load_from_checkpoint(
threshold=args.threshold,
checkpoint_path=args.resume_from_checkpoint,
**transformer_config
)
trainer = pl.Trainer.from_argparse_args(args, logger=False)
if args.predict:
if args.save_path is None:
raise ValueError('save_path is not specified')
prediction = trainer.predict(model, loader)
for pred_dict in tqdm(prediction):
for i in range(len(pred_dict['generation'])):
tax_path = os.path.join(args.save_path, pred_dict['taxonomy_id'][i], pred_dict['model_id'][i])
if not os.path.isdir(tax_path):
os.makedirs(tax_path)
voxel = pred_dict['generation'][i][0].cpu().numpy()
save_binvox(
voxel.astype(np.bool),
os.path.join(tax_path, 'prediction.binvox'),
pred_dict['translate'][i].cpu().numpy(),
pred_dict['scale'][i].cpu().numpy(),
)
else:
trainer.test(model, loader)