-
Notifications
You must be signed in to change notification settings - Fork 5
/
nerf_sample_ray.py
166 lines (139 loc) · 5.31 KB
/
nerf_sample_ray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
from collections import OrderedDict
import torch
import cv2
import imageio
import os
def load_img(img_fpath, mask_fpath=None):
im = imageio.imread(img_fpath).astype(np.float32)
# ldr or hdr
if img_fpath.endswith('.png') or img_fpath.endswith('.jpg'):
im = im / 255.
elif img_fpath.endswith('.exr'):
print('Clipping hdr images to [0,1]')
im = np.clip(im, 0., 1.)
# rgba
if im.shape[-1] == 4:
alpha = im[:, :, 3:4]
im = im[:, :, :3] * alpha + np.ones_like(im[:, :, :3]) * (1. - alpha)
# read mask and maskout background as white
if (mask_fpath is not None) and (os.path.isfile(mask_fpath)):
print('Loading mask and masking images with white background!')
mask = imageio.imread(mask_fpath).astype(np.float32) / 255.
im = im * mask[:, :, np.newaxis] + np.ones_like(im) * (1. - mask[:, :, np.newaxis])
return im, None
def get_rays(u, v, K, C2W):
'''
:param u: 1D array; [N, ]
:param v: 1D array; [N, ]
:param K: 4x4 matrix
:param C2W: 4x4 matrix
:return:
'''
u = u.astype(dtype=np.float64) + 0.5 # add half pixel
v = v.astype(dtype=np.float64) + 0.5
pixels = np.stack((u, v, np.ones_like(u)), axis=0) # (3, N)
rays_d = np.matmul(np.linalg.inv(K[:3, :3]), pixels)
rays_d = np.matmul(C2W[:3, :3], rays_d) # (3, N)
rays_d = rays_d.transpose((1, 0)) # (N, 3)
rays_o = C2W[:3, 3].reshape((1, 3))
dist = np.linalg.norm(rays_o.flatten())
rays_o = np.tile(rays_o, (rays_d.shape[0], 1)) # (N, 3)
# print('dist: ', dist)
rays_d = rays_d / np.linalg.norm(rays_d, axis=-1, keepdims=True)
## shift rays towards camera
if dist > 1e3:
rays_o = rays_o + rays_d * (dist - 5.)
return rays_o.astype(np.float32), rays_d.astype(np.float32)
class RaySamplerSingleImage(object):
def __init__(self, img_size, K, C2W, img_fpath=None, mask_fpath=None, half_res=False, downsample_factor=1):
super().__init__()
self.W, self.H = img_size
self.K = np.copy(K)
self.C2W = np.copy(C2W)
self.img_fpath = img_fpath
self.mask_fpath = mask_fpath
self.img = None
self.mask = None
if self.img_fpath is not None:
self.img, self.mask = load_img(self.img_fpath, self.mask_fpath)
if half_res:
downsample_factor = 2
# half-resolution output
if downsample_factor != 1:
self.W = self.W // downsample_factor
self.H = self.H // downsample_factor
self.K[:2, :3] /= downsample_factor
if self.img is not None:
self.img = cv2.resize(self.img, (self.W, self.H), interpolation=cv2.INTER_AREA)
if self.mask is not None:
self.mask = cv2.resize(self.mask, (self.W, self.H), interpolation=cv2.INTER_AREA)
if self.img is not None:
self.img = self.img.reshape((-1, 3))
if self.mask is not None:
self.mask = self.mask.reshape((-1))
def get_img_and_mask(self):
img = self.img
mask = self.mask
if img is not None:
img = img.reshape((self.H, self.W, 3))
if mask is not None:
mask = mask.reshape((self.H, self.W))
return img, mask
def get_all(self):
select_inds = np.arange(self.H * self.W)
v = select_inds // self.W
u = select_inds - v * self.W
rays_o, rays_d = get_rays(u, v, self.K, self.C2W)
ret = OrderedDict([
('rays_o', rays_o),
('rays_d', rays_d),
('rgb', self.img),
('mask', self.mask)
])
# convert to torch tensors
for k in ret:
if ret[k] is not None:
ret[k] = torch.from_numpy(ret[k])
return ret
def random_sample(self, N_rand, center_crop=False):
'''
:param N_rand: number of rays to be casted
:return:
'''
if center_crop:
half_H = self.H // 2
half_W = self.W // 2
quad_H = half_H // 2
quad_W = half_W // 2
u, v = np.meshgrid(np.arange(half_W-quad_W, half_W+quad_W),
np.arange(half_H-quad_H, half_H+quad_H))
u = u.reshape(-1)
v = v.reshape(-1)
select_inds = np.random.choice(u.shape[0], size=(N_rand,), replace=False)
select_inds = v[select_inds] * self.W + u[select_inds] # convert back to original image
else:
select_inds = np.random.choice(self.H*self.W, size=(N_rand,), replace=False)
v = select_inds // self.W
u = select_inds - v * self.W
rays_o, rays_d = get_rays(u, v, self.K, self.C2W)
# print('here: ', rays_o.shape, rays_d.shape, u.shape, v.shape)
if self.img is not None:
rgb = self.img[select_inds, :] # [N_rand, 3]
else:
rgb = None
if self.mask is not None:
mask = self.mask[select_inds]
else:
mask = None
ret = OrderedDict([
('rays_o', rays_o),
('rays_d', rays_d),
('rgb', rgb),
('mask', mask)
])
# convert to torch tensors
for k in ret:
if ret[k] is not None:
ret[k] = torch.from_numpy(ret[k])
return ret