-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_st_tr.py
executable file
·646 lines (560 loc) · 31.1 KB
/
train_st_tr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# The testing module requires faiss
from functools import partial
import sys
# So if you don't have that, then this import will break
from pml import trainers
from resnet import resnet18
from pml import losses, miners, samplers, testers, utils
#import losss
import torch.nn as nn
from vit_pytorch.swin import build_model
import record_keeper
import sklearn
from utils import common_functions as c_f
import pml.utils.logging_presets as logging_presets
import pml
import omegaconf
import pml as pytorch_metric_learning
from torchvision import datasets, models, transforms
import torchvision
import logging
logging.getLogger().setLevel(logging.INFO)
import os
#from pytorch_pretrained_vit import ViT
from pml.losses.base_metric_loss_function import BaseMetricLossFunction
from pml.testers.base_tester import BaseTester
from vit_pytorch.pvt import PyramidVisionTransformer
from vit_pytorch.CausalLevit import LeViT_384
logging.info("pytorch-metric-learning VERSION %s"%pytorch_metric_learning.__version__)
logging.info("record_keeper VERSION %s"%record_keeper.__version__)
import logging
from sklearn.metrics import accuracy_score
from vit_pytorch.ResT import rest_small
#from efficientnet_pytorch import EfficientNet
import torch
import numpy as np
from st_gcn.net.st_gcn import Model
import pickle
import sys
import hydra
from gcn_augmentation import Padding
from omegaconf import DictConfig
from PIL import Image
# reprodcibile
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class TemporalDownSample(object):
"""Rescale the image in a sample to a given size.
Args:
output_size (tuple or int): Desired output size. If tuple, output is
matched to output_size. If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, downsample_rate=2):
#assert isinstance(output_size, (int, tuple))
self.ds_rate = downsample_rate
def __call__(self, sample):
sample = np.array(sample)
samples =sample[:,::self.ds_rate]
#print(Image.fromarray(samples).size)
#sys.exit()
return Image.fromarray(samples)
class AddGaussianNoise(object):
def __init__(self, mean=0., std=0.05):
self.std = std
self.mean = mean
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
class Loss_n(BaseMetricLossFunction):
def __init__(self):
super().__init__()
self.n_pair_loss = losses.NPairsLoss()
self.angular_loss = losses.AngularLoss(alpha=45)
def compute_loss(self, embeddings, labels, indices_tuple):
dict_angular = self.angular_loss.compute_loss(embeddings, labels, indices_tuple)
dict_npair = self.n_pair_loss.compute_loss(embeddings, labels, indices_tuple)
losses = 0.01*dict_angular['loss']['losses']+0.1*dict_npair['loss']['losses']
dict_angular['loss']['losses']=losses
return dict_angular
def calibration_augmentation(base_means, base_cov,embedding_and_labels):
n_shot = 1
n_ways = 20
support_data = np.nan_to_num(embedding_and_labels['samples'][0])
support_label = embedding_and_labels['samples'][1]
sampled_data = []
sampled_label = []
num_sampled = int(10/n_shot)
for i in range(20):
mean, cov = distribution_calibration(support_data[np.squeeze(support_label == i),:], base_means, base_cov, k=4)
sampled_data.append(np.random.multivariate_normal(mean=mean, cov=cov, size=num_sampled))
sampled_label.extend([support_label[i]]*num_sampled)
sampled_data = np.concatenate([sampled_data[:]]).reshape(n_ways * n_shot * num_sampled, -1)
X_aug = np.concatenate([support_data, sampled_data])
Y_aug = np.concatenate([support_label, sampled_label])
return X_aug,Y_aug
def distribution_calibration( query, base_means, base_cov, k, alpha=0.21):
dist = []
for i in range(len(base_means)):
dist.append(np.linalg.norm(query - base_means[i]))
index = np.argpartition(dist, k)[:k]
mean = np.concatenate([np.array(base_means)[index], query])
calibrated_mean = np.mean(mean, axis=0)
#print(base_cov)
calibrated_cov = np.mean(np.array(base_cov)[index], axis=0) + alpha
return calibrated_mean, calibrated_cov
class OneShotTester(BaseTester):
def __init__(self, end_of_testing_hook=None):
super().__init__()
self.max_accuracy = 0.0
self.embedding_filename = ""
self.end_of_testing_hook = end_of_testing_hook
def __get_correct(self, output, target, topk=(1,)):
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
# print(correct)
return correct
def __accuracy(self, output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
correct = self.__get_correct(output, target, topk)
batch_size = target.size(0)
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def do_knn_and_accuracies(self, accuracies, embeddings_and_labels, split_name, tag_suffix=''):
# print(embeet dings_and_labels)
# train_embeddings = embeddings_and_labels['train'][0]
# train_labels = embeddings_and_labels['train'][1]
# print(train_embeddings.shape)
# print(train_labels.shape)
query_embeddings = embeddings_and_labels["val"][0]
query_labels = embeddings_and_labels["val"][1]
reference_embeddings = embeddings_and_labels["samples"][0]
reference_labels = embeddings_and_labels["samples"][1]
#print(reference_labels_1)
#reference_embeddings = np.zeros((7, 128))
# print(reference_embeddings_1.shape)
# sys.exit()
'''
for i in range(7):
# mask = reference_labels_1 == i+100
# mask = np.squeeze(mask)
reference_embeddings[i, :] = reference_embeddings_1[3 * i:3 * i + 3, :].mean(axis=0)
reference_labels = np.arange(0, 7)
'''
#reference_labels = embeddings_and_labels["samples"][1]
knn_indices, knn_distances = utils.stat_utils.get_knn(reference_embeddings.astype('float32'),
query_embeddings.astype('float32'), 1, False)
knn_labels = reference_labels[knn_indices][:, 0]
accuracy = accuracy_score(knn_labels, query_labels)
f_1_score = sklearn.metrics.f1_score(query_labels, knn_labels, average='macro')
precision = sklearn.metrics.precision_score(query_labels, knn_labels, average='macro')
recall = sklearn.metrics.recall_score(query_labels, knn_labels, average='macro')
logging.info('accuracy:{}'.format(accuracy))
logging.info('f_1_score:{}'.format(f_1_score))
logging.info('precision:{}'.format(precision))
logging.info('recall:{}'.format(recall))
'''
query_embeddings = embeddings_and_labels["val"][0]
query_labels = embeddings_and_labels["val"][1]
reference_embeddings_1 = embeddings_and_labels["samples"][0]
reference_labels_1 = embeddings_and_labels["samples"][1]
# print(reference_labels_1)
reference_embeddings = np.zeros((7, 128))
# print(reference_embeddings_1.shape)
# sys.exit()
for i in range(7):
# mask = reference_labels_1 == i+100
# mask = np.squeeze(mask)
reference_embeddings[i, :] = reference_embeddings_1[3 * i:3 * i + 1, :].mean(axis=0)
query_embeddings = np.concatenate([query_embeddings, reference_embeddings_1[3 * i + 1:3 * i + 3, :]],
axis=0)
query_labels = np.concatenate([query_labels, reference_labels_1[3 * i + 1:3 * i + 3, :]], axis=0)
reference_labels = np.arange(0, 12)
# reference_labels = embeddings_and_labels["samples"][1]
knn_indices, knn_distances = utils.stat_utils.get_knn(reference_embeddings.astype('float32'),
query_embeddings.astype('float32'), 1, False)
knn_labels = reference_labels[knn_indices][:, 0]
accuracy = accuracy_score(knn_labels, query_labels)
f_1_score = sklearn.metrics.f1_score(query_labels, knn_labels, average='macro')
precision = sklearn.metrics.precision_score(query_labels, knn_labels, average='macro')
recall = sklearn.metrics.recall_score(query_labels, knn_labels, average='macro')
logging.info('accuracy:{}'.format(accuracy))
logging.info('f_1_score:{}'.format(f_1_score))
logging.info('precision:{}'.format(precision))
logging.info('recall:{}'.format(recall))
'''
accuracies["accuracy"] = accuracy
# accuracies["f_1_score"] = f_1_score
# accuracies["precosion"] = precision
# accuracies["recall"] = recall
keyname = self.accuracies_keyname("mean_average_precision_at_r") # accuracy as keyname not working
accuracies[keyname] = accuracy
# print(accuracy
def do_knn_and_accuracies_aug(self, accuracies, embeddings_and_labels, split_name, tag_suffix=''):
#print(embeddings_and_labels)
print("test")
train_embeddings = embeddings_and_labels['train'][0]
train_labels = embeddings_and_labels['train'][1]
#print(train_labels.shape)
#print(train_embeddings.shape)
base_means = []
base_cov = []
for key in range(100):
feature = train_embeddings[np.squeeze(train_labels == key,axis=1),:]
mean = np.mean(feature, axis=0)
cov = np.cov(feature.T)
base_means.append(mean)
base_cov.append(cov)
#print(cov.shape)
x_aug, y_aug = calibration_augmentation(base_means, base_cov,embeddings_and_labels)
#print(train_embeddings.shape)
#print(train_labels.shape)
reference_embedding = []
reference_labels = []
for key in range(20):
reference_embedding.append(x_aug[np.squeeze(y_aug==key),:].mean(0))
reference_labels.append(key)
reference_embeddings = np.stack(reference_embedding, axis=0)
reference_labels = np.stack(reference_labels,axis=0)
query_embeddings = embeddings_and_labels["val"][0]
query_labels = embeddings_and_labels["val"][1]
#reference_embeddings = #embeddings_and_labels["samples"][0]
#reference_labels = #embeddings_and_labels["samples"][1]
#print(reference_embeddings.shape)
#print(query_embeddings.shape)
knn_indices, knn_distances = utils.stat_utils.get_knn(reference_embeddings.astype(np.float32), query_embeddings, 1, False)
knn_labels = reference_labels[knn_indices][:,0]
accuracy = accuracy_score(knn_labels, query_labels)
f_1_score = sklearn.metrics.f1_score(knn_labels, query_labels)
precision = sklearn.metrics.precision_score(knn_labels, query_labels)
recall = sklearn.metrics.recall_score(knn_labels, query_labels)
logging.info('accuracy:{}'.format(accuracy))
logging.info('f_1_score:{}'.format(f_1_score))
logging.info('precision:{}'.format(precision))
logging.info('recall:{}'.format(recall))
#print('accuracy:', accuracy, ' f_1_score: ',f_1_score, ' precision: 'precision, ' recall: ', recall)
accuracies["accuracy"] = accuracy
#accuracies["f_1_score"] = f_1_score
#accuracies["precosion"] = precision
#accuracies["recall"] = recall
keyname = self.accuracies_keyname("mean_average_precision_at_r") # accuracy as keyname not working
accuracies[keyname] = accuracy
class MLP(nn.Module):
# layer_sizes[0] is the dimension of the input
# layer_sizes[-1] is the dimension of the output
def __init__(self, layer_sizes, final_relu=False):
super().__init__()
layer_list = []
layer_sizes = [int(x) for x in layer_sizes]
num_layers = len(layer_sizes) - 1
final_relu_layer = num_layers if final_relu else num_layers - 1
for i in range(len(layer_sizes) - 1):
input_size = layer_sizes[i]
curr_size = layer_sizes[i + 1]
if i < final_relu_layer:
layer_list.append(nn.ReLU(inplace=True))
layer_list.append(nn.Linear(input_size, curr_size))
self.net = nn.Sequential(*layer_list)
self.last_linear = self.net[-1]
def forward(self, x):
out = self.net(x)
#print(out.size())
return out
class SignalModule(nn.Module):
def __init__(self,cfg):
super().__init__()
#self.trunk_signal = torchvision.models.__dict__[cfg.model.model_name](pretrained=cfg.model.pretrained)
#ViT(image_size=256,patch_size=64, num_classes=21, dim=512,depth=6, heads=16, mlp_dim=21,dropout=0.1,emb_dropout=0.1)
self.trunk_signal = LeViT_384(num_classes=512, distillation=True,
pretrained=False, fuse=False)
self.trunk_fft = LeViT_384(num_classes=512, distillation=True,
pretrained=False, fuse=False, in_chans=6)
"""PyramidVisionTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
)
self.trunk_fft = PyramidVisionTransformer(
patch_size=4, in_chans=6, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
)"""
"""
self.trunk_fft = LeViT(
image_size = 256,
num_classes = 20,
stages = 3, # number of stages
dim = (256, 384, 512), # dimensions at each stage
depth = 4, # transformer of depth 4 at each stage
heads = (4, 6, 8), # heads at each stage
mlp_mult = 2,
dropout = 0.1
)
"""
#self.trunk_signal.fc = Identity()
#self.trunk_fft.fc =Identity()
#ViT(image_size=256,patch_size=64, num_classes=21, dim=512,depth=6, heads=16,channels=6, mlp_dim=21,dropout=0.1,emb_dropout=0.1)
#self.conv_fusion = nn.Sequential(
# nn.Conv2d(1024, 512, kernel_size=3, padding=1, bias=False),
# nn.BatchNorm2d(1024, eps=1e-3, momentum=0.01),
# nn.ReLU()
#)
self.MLP_2 = MLP([1024,512])
#self.MLP = MLP([6,3])
def forward(self, x):
#print(x.size())
batch_size = x.size()[0]
c_1 = self.trunk_signal(x)
data_fft = torch.rfft(x.permute(0,1,3,2),signal_ndim=1)
#print(data_fft[:,:,:,:,1])
#sys.exit()
real = data_fft[:,:,:,:,0].permute(0,1,3,2)
imag = data_fft[:,:,:,:,1].permute(0,1,3,2)
norm = torch.nn.functional.normalize(torch.sqrt(torch.pow(real,2)+torch.pow(imag,2)), dim=-2)
angle =torch.nn.functional.normalize(torch.atan2(real,imag),dim=-2)
data_fusion = torch.cat([norm,angle], dim=1)
#print(data_fusion.size())
#sys.exit()
container = torch.zeros([batch_size,6,256,256]).cuda()
container[:,:,:129,:]=data_fusion[:,:,:,:]
container[:,:,129:,:]=torch.flip(container,dims=[2])[:,:,:127,:]
c_2 = self.trunk_fft(container)
c_2 = self.trunk_signal(x)
#print(c_1.size(), c2.size())
fusion = self.MLP_2(torch.cat([c_1, c_2],dim=1))
return fusion
# This is for replacing the last layer of a pretrained network.
# This code is from https://github.com/KevinMusgrave/powerful_benchmarker
class Identity(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
def get_datasets(data_dir, cfg, mode="train"):
common_transforms = []
train_transforms = []
test_transforms = []
#if cfg.transform.transform_resize_match:
#common_transforms.append(TemporalDownSample())
#common_transforms.append(transforms.Resize((256, 256)))
if cfg.transform.transform_random_resized_crop:
train_transforms.append(transforms.RandomResizedCrop(cfg.transform.transform_resize))
if cfg.transform.transform_random_horizontal_flip:
train_transforms.append(torchvision.transforms.RandomHorizontalFlip(p=0.5))
if cfg.transform.transform_random_rotation:
train_transforms.append(transforms.RandomRotation(cfg.transform.transform_random_rotation_degrees))#, fill=255))
if cfg.transform.transform_random_shear:
train_transforms.append(torchvision.transforms.RandomAffine(0,
shear=(
cfg.transform.transform_random_shear_x1,
cfg.transform.transform_random_shear_x2,
cfg.transform.transform_random_shear_y1,
cfg.transform.transform_random_shear_y2
),
fillcolor=255))
if cfg.transform.transform_random_perspective:
train_transforms.append(transforms.RandomPerspective(distortion_scale=cfg.transform.transform_perspective_scale,
p=0.5,
interpolation=3)
)
if cfg.transform.transform_random_affine:
train_transforms.append(transforms.RandomAffine(degrees=(cfg.transform.transform_degrees_min,
cfg.transform.transform_degrees_max),
translate=(cfg.transform.transform_translate_a,
cfg.transform.transform_translate_b),
fillcolor=255))
data_transforms = {
'train': transforms.Compose([Padding()]),
'test': transforms.Compose(Padding()),
}
train_dataset = datasets.ImageFolder(os.path.join(data_dir, "train"),
data_transforms["train"])
# for the final model we can join train, validation, validation samples datasets
print(mode)
if mode == "final_train":
#train_dataset = torch.utils.data.ConcatDataset([train_dataset,
# val_dataset,
# val_samples_dataset])
test_dataset = datasets.ImageFolder(os.path.join(data_dir, "test"),
data_transforms["test"])
samples_dataset = datasets.ImageFolder(os.path.join(data_dir, "samples"),
data_transforms["test"])
return train_dataset, test_dataset, samples_dataset
else:
if mode == "train":
val_dataset = datasets.ImageFolder(os.path.join(data_dir, "val"),
data_transforms["test"])
val_samples_dataset = datasets.ImageFolder(os.path.join(data_dir, "val_samples"),
data_transforms["test"])
return train_dataset, val_dataset, val_samples_dataset
if mode == "test":
return train_dataset, test_dataset, samples_dataset
from collections import defaultdict
class AttributeDict(defaultdict):
def __init__(self):
super(AttributeDict, self).__init__(AttributeDict)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(key)
def __setattr__(self, key, value):
self[key] = value
@hydra.main(config_path="config/config.yaml")
def train_app(cfg):
#cfg = {}
#for item,val in zip(cfg1.keys(),cfg1.values()):
# cfg[item]=val[str(item)]
print(cfg.pretty())
#cfg = AttributeDict(cfg)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#trunk = PyramidVisionTransformer(
# patch_size=4, embed_dims=[128, 256, 512, 768], num_heads=[2, 4, 8, 12], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
# norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 10, 60, 3], sr_ratios=[8, 4, 2, 1],
# )
#trunk = PyramidVisionTransformer(
# patch_size=32, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
# norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
# )
#trunk = rest_small(pretrained=False)#
#trunk = build_model() #LeViT_384(num_classes=512, distillation=True,pretrained=False, fuse=False)
trunk = Model() #LeViT_384(num_classes=512, distillation=True,
# pretrained=False, fuse=False)
#device=torch.device("cpu")
# Set trunk model and replace the softmax layer with an identity function
#trunk = torchvision.models.__dict__[cfg.model.model_name](pretrained=cfg.model.pretrained)
#trunk = SignalModule(cfg)
#trunk=ViT(image_size=256,patch_size=64, num_classes=21, dim=512,depth=6, heads=16, mlp_dim=21,dropout=0.1,e
#trunk= torchvision.models.__dict__[cfg.model.model_name](pretrained=cfg.model.pretrained)
#trunk = resnet18(pretrained=False)
#trunk = models.alexnet(pretrained=True)
#trunk = models.resnet50(pretrained=True)
#trunk = models.resnet152(pretrained=True)
#trunk = models.wide_resnet50_2(pretrained=True)
#trunk = EfficientNet.from_pretrained('efficientnet-b2')
#trunk = ViT('B_16_imagenet1k', pretrained=True)
#trunk.fc = Identity()
trunk_output_size = 512
embedder = MLP([trunk_output_size, cfg.embedder.size])
classifier = MLP([cfg.embedder.size, 21]) #23 levitpmbfa toyota 24 swin
#trunk.head = Identity()
#trunk.head_2 = Identity()
#path = '/home/kpeng/oneshot_metriclearning/transformer-sl-dml/outputs/2021-10-26/07-04-57/example_saved_models_c_2_cat/swin120_rep_twostage__proPMBFA_re_nturgbd_dataset_100_20_noise/'
#embedder.load_state_dict(torch.load(path+'embedder_20.pth'))
embedder = torch.nn.DataParallel(embedder.to(device))
#classifier = MLP([cfg.embedder.size, 21])
#classifier.load_state_dict(torch.load(path+'classifier_20.pth'))
classifier = torch.nn.DataParallel(classifier).to(device)
#trunk.load_state_dict(torch.load(path + 'trunk_20.pth'))
trunk = torch.nn.DataParallel(trunk.to(device))
#trunk = torch.nn.DataParallel(trunk.to(device))
#embedder = torch.nn.DataParallel(MLP([trunk_output_size, cfg.embedder.size]).to(device))
#classifier = torch.nn.DataParallel(MLP([cfg.embedder.size, 49])).to(device) #23 levitpmbfa toyota 24 swin
# Set optimizers
if cfg.optimizer.name == "sdg":
trunk_optimizer = torch.optim.SGD(trunk.parameters(), lr=cfg.optimizer.lr, momentum=cfg.optimizer.momentum, weight_decay=cfg.optimizer.weight_decay)
embedder_optimizer = torch.optim.SGD(embedder.parameters(), lr=cfg.optimizer.lr, momentum=cfg.optimizer.momentum, weight_decay=cfg.optimizer.weight_decay)
classifier_optimizer = torch.optim.SGD(classifier.parameters(), lr=cfg.optimizer.lr, momentum=cfg.optimizer.momentum, weight_decay=cfg.optimizer.weight_decay)
elif cfg.optimizer.name == "rmsprop":
trunk_optimizer = torch.optim.RMSprop(trunk.parameters(), lr=cfg.optimizer.lr, momentum=cfg.optimizer.momentum, weight_decay=cfg.optimizer.weight_decay)
embedder_optimizer = torch.optim.RMSprop(embedder.parameters(), lr=cfg.optimizer.lr, momentum=cfg.optimizer.momentum, weight_decay=cfg.optimizer.weight_decay)
classifier_optimizer = torch.optim.RMSprop(classifier.parameters(), lr=cfg.optimizer.lr, momentum=cfg.optimizer.momentum, weight_decay=cfg.optimizer.weight_decay)
elif cfg.optimizer.name == 'adam':
trunk_optimizer = torch.optim.Adam(trunk.parameters(), lr=cfg.optimizer.lr, weight_decay = cfg.optimizer.weight_decay)
embedder_optimizer = torch.optim.Adam(embedder.parameters(), lr=cfg.optimizer.lr, weight_decay = cfg.optimizer.weight_decay)
classifier_optimizer = torch.optim.Adam(classifier.parameters(), lr=cfg.optimizer.lr, weight_decay = cfg.optimizer.weight_decay)
# Set the datasets
data_dir = os.environ["DATASET_FOLDER"]+"/"+cfg.dataset.data_dir
print("Data dir: "+data_dir)
train_dataset, val_dataset, val_samples_dataset = get_datasets(data_dir, cfg, mode=cfg.mode.type)
print("Trainset: ",len(train_dataset), "Testset: ",len(val_dataset), "Samplesset: ",len(val_samples_dataset))
# Set the loss function
if cfg.embedder_loss.name == "margin_loss":
loss = losses.MarginLoss(margin=cfg.embedder_loss.margin,nu=cfg.embedder_loss.nu,beta=cfg.embedder_loss.beta)
#if cfg.embedder_loss.name == "triplet_margin":
loss = losses.TripletMarginLoss(margin=cfg.embedder_loss.margin)
#loss_angular = losses.AngularLoss(alpha=40)
if cfg.embedder_loss.name == "multi_similarity":
loss = losses.MultiSimilarityLoss(alpha=cfg.embedder_loss.alpha, beta=cfg.embedder_loss.beta, base=cfg.embedder_loss.base)
#if cfg.embedder_loss.name == "proxyanchor":
#loss = Loss() #losses.ProxyAnchorLoss(num_classes = 22, embedding_size = cfg.embedder.size).cuda()
# Set the classification loss:
classification_loss = torch.nn.CrossEntropyLoss()
# Set the mining function
if cfg.miner.name == "triplet_margin":
#miner = miners.TripletMarginMiner(margin=0.2)
miner = miners.TripletMarginMiner(margin=cfg.miner.margin)
if cfg.miner.name == "multi_similarity":
miner = miners.MultiSimilarityMiner(epsilon=cfg.miner.epsilon)
#miner = miners.MultiSimilarityMiner(epsilon=0.05)
batch_size = cfg.trainer.batch_size
num_epochs = cfg.trainer.num_epochs
iterations_per_epoch = cfg.trainer.iterations_per_epoch
# Set the dataloader sampler
sampler = samplers.MPerClassSampler(train_dataset.targets, m=4, length_before_new_iter=len(train_dataset))
# Package the above stuff into dictionaries.
models = {"trunk": trunk, "embedder": embedder, "classifier": classifier}
optimizers = {"trunk_optimizer": trunk_optimizer, "embedder_optimizer": embedder_optimizer, "classifier_optimizer": classifier_optimizer}
loss_funcs = {"metric_loss": loss ,"classifier_loss": classification_loss}
mining_funcs = {"tuple_miner": miner}
# We can specify loss weights if we want to. This is optional
loss_weights = {"metric_loss": cfg.loss.metric_loss, "classifier_loss": cfg.loss.classifier_loss}
schedulers = {
#"metric_loss_scheduler_by_epoch": torch.optim.lr_scheduler.StepLR(classifier_optimizer, cfg.scheduler.step_size, gamma=cfg.scheduler.gamma),
"embedder_scheduler_by_epoch": torch.optim.lr_scheduler.StepLR(embedder_optimizer, 10, gamma=cfg.scheduler.gamma),
"classifier_scheduler_by_epoch": torch.optim.lr_scheduler.StepLR(classifier_optimizer, 10, gamma=cfg.scheduler.gamma),
"trunk_scheduler_by_epoch": torch.optim.lr_scheduler.StepLR(embedder_optimizer, 10, gamma=cfg.scheduler.gamma),
} # cfg.scheduler.step_size
experiment_name = "model_c2_cat_levit_%s_model_%s_cl_%s_ml_%s_miner_%s_mix_ml_%02.2f_mix_cl_%02.2f_resize_%d_emb_size_%d_class_size_%d_opt_%s_lr_%02.2f_m_%02.2f_wd_%02.2f"%(cfg.dataset.name,
cfg.model.model_name,
"cross_entropy",
cfg.embedder_loss.name,
cfg.miner.name,
cfg.loss.metric_loss,
cfg.loss.classifier_loss,
cfg.transform.transform_resize,
cfg.embedder.size,
cfg.embedder.class_out_size,
cfg.optimizer.name,
cfg.optimizer.lr,
cfg.optimizer.momentum,
cfg.optimizer.weight_decay)
experiment_name = 'ntu120redindex_Levit_ProFormer_No_Noise'
record_keeper, _, _ = logging_presets.get_record_keeper("logs_c_2_cat/%s"%(experiment_name), "tensorboard_c_2_cat/%s"%(experiment_name))
hooks = logging_presets.get_hook_container(record_keeper)
dataset_dict = {"samples": val_samples_dataset, "val": val_dataset}
model_folder = "example_saved_models_c_2_cat/%s/"%(experiment_name)
# Create the tester
tester = OneShotTester(
end_of_testing_hook=hooks.end_of_testing_hook,
#size_of_tsne=20
)
#tester.embedding_filename=data_dir+"/embeddings_pretrained_triplet_loss_multi_similarity_miner.pkl"
tester.embedding_filename=data_dir+"/"+experiment_name+".pkl"
end_of_epoch_hook = hooks.end_of_epoch_hook(tester, dataset_dict, model_folder)
trainer = trainers.TrainWithClassifier(models,
optimizers,
batch_size,
loss_funcs,
mining_funcs,
train_dataset,
sampler=sampler,
lr_schedulers=schedulers,
dataloader_num_workers = cfg.trainer.batch_size,
loss_weights=loss_weights,
end_of_iteration_hook=hooks.end_of_iteration_hook,
end_of_epoch_hook=end_of_epoch_hook
)
trainer.train(num_epochs=num_epochs)
tester = OneShotTester()
if __name__ == "__main__":
train_app()