-
Notifications
You must be signed in to change notification settings - Fork 0
/
shifted_gcn.py
executable file
·343 lines (291 loc) · 12.4 KB
/
shifted_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import math
import pdb
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
def import_class(name):
components = name.split('.')
mod = __import__(components[0])
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
def conv_branch_init(conv, branches):
weight = conv.weight
n = weight.size(0)
k1 = weight.size(1)
k2 = weight.size(2)
nn.init.normal_(weight, 0, math.sqrt(2. / (n * k1 * k2 * branches)))
nn.init.constant_(conv.bias, 0)
def conv_init(conv):
if conv.weight is not None:
nn.init.kaiming_normal_(conv.weight, mode='fan_out')
if conv.bias is not None:
nn.init.constant_(conv.bias, 0)
def bn_init(bn, scale):
nn.init.constant_(bn.weight, scale)
nn.init.constant_(bn.bias, 0)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
if hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if hasattr(m, 'bias') and m.bias is not None and isinstance(m.bias, torch.Tensor):
nn.init.constant_(m.bias, 0)
elif classname.find('BatchNorm') != -1:
if hasattr(m, 'weight') and m.weight is not None:
m.weight.data.normal_(1.0, 0.02)
if hasattr(m, 'bias') and m.bias is not None:
m.bias.data.fill_(0)
class TemporalConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1):
super(TemporalConv, self).__init__()
pad = (kernel_size + (kernel_size-1) * (dilation-1) - 1) // 2
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=(kernel_size, 1),
padding=(pad, 0),
stride=(stride, 1),
dilation=(dilation, 1))
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class MultiScale_TemporalConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
dilations=[1,2,3,4],
residual=True,
residual_kernel_size=1):
super().__init__()
assert out_channels % (len(dilations) + 2) == 0, '# out channels should be multiples of # branches'
# Multiple branches of temporal convolution
self.num_branches = len(dilations) + 2
branch_channels = out_channels // self.num_branches
if type(kernel_size) == list:
assert len(kernel_size) == len(dilations)
else:
kernel_size = [kernel_size]*len(dilations)
# Temporal Convolution branches
self.branches = nn.ModuleList([
nn.Sequential(
nn.Conv2d(
in_channels,
branch_channels,
kernel_size=1,
padding=0),
nn.BatchNorm2d(branch_channels),
nn.ReLU(inplace=True),
TemporalConv(
branch_channels,
branch_channels,
kernel_size=ks,
stride=stride,
dilation=dilation),
)
for ks, dilation in zip(kernel_size, dilations)
])
# Additional Max & 1x1 branch
self.branches.append(nn.Sequential(
nn.Conv2d(in_channels, branch_channels, kernel_size=1, padding=0),
nn.BatchNorm2d(branch_channels),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(3,1), stride=(stride,1), padding=(1,0)),
nn.BatchNorm2d(branch_channels) # 为什么还要加bn
))
self.branches.append(nn.Sequential(
nn.Conv2d(in_channels, branch_channels, kernel_size=1, padding=0, stride=(stride,1)),
nn.BatchNorm2d(branch_channels)
))
# Residual connection
if not residual:
self.residual = lambda x: 0
elif (in_channels == out_channels) and (stride == 1):
self.residual = lambda x: x
else:
self.residual = TemporalConv(in_channels, out_channels, kernel_size=residual_kernel_size, stride=stride)
# initialize
self.apply(weights_init)
def forward(self, x):
# Input dim: (N,C,T,V)
res = self.residual(x)
branch_outs = []
for tempconv in self.branches:
out = tempconv(x)
branch_outs.append(out)
out = torch.cat(branch_outs, dim=1)
out += res
return out
class CTRGC(nn.Module):
def __init__(self, in_channels, out_channels, rel_reduction=8, mid_reduction=1):
super(CTRGC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if in_channels == 3 or in_channels == 9:
self.rel_channels = 8
self.mid_channels = 16
else:
self.rel_channels = in_channels // rel_reduction
self.mid_channels = in_channels // mid_reduction
self.conv1 = nn.Conv2d(self.in_channels, self.rel_channels, kernel_size=1)
self.conv2 = nn.Conv2d(self.in_channels, self.rel_channels, kernel_size=1)
self.conv3 = nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1)
self.conv4 = nn.Conv2d(self.rel_channels, self.out_channels, kernel_size=1)
self.tanh = nn.Tanh()
for m in self.modules():
if isinstance(m, nn.Conv2d):
conv_init(m)
elif isinstance(m, nn.BatchNorm2d):
bn_init(m, 1)
def forward(self, x, A=None, alpha=1):
x1, x2, x3 = self.conv1(x).mean(-2), self.conv2(x).mean(-2), self.conv3(x)
x1 = self.tanh(x1.unsqueeze(-1) - x2.unsqueeze(-2))
x1 = self.conv4(x1) * alpha + (A.unsqueeze(0).unsqueeze(0) if A is not None else 0) # N,C,V,V
x1 = torch.einsum('ncuv,nctv->nctu', x1, x3)
return x1
class unit_tcn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
super(unit_tcn, self).__init__()
pad = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
stride=(stride, 1))
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
conv_init(self.conv)
bn_init(self.bn, 1)
def forward(self, x):
x = self.bn(self.conv(x))
return x
class unit_gcn(nn.Module):
def __init__(self, in_channels, out_channels, A, coff_embedding=4, adaptive=True, residual=True):
super(unit_gcn, self).__init__()
inter_channels = out_channels // coff_embedding
self.inter_c = inter_channels
self.out_c = out_channels
self.in_c = in_channels
self.adaptive = adaptive
self.num_subset = A.shape[0]
self.convs = nn.ModuleList()
for i in range(self.num_subset):
self.convs.append(CTRGC(in_channels, out_channels))
if residual:
if in_channels != out_channels:
self.down = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1),
nn.BatchNorm2d(out_channels)
)
else:
self.down = lambda x: x
else:
self.down = lambda x: 0
if self.adaptive:
self.PA = nn.Parameter(torch.from_numpy(A.astype(np.float32)))
else:
self.A = Variable(torch.from_numpy(A.astype(np.float32)), requires_grad=False)
self.alpha = nn.Parameter(torch.zeros(1))
self.bn = nn.BatchNorm2d(out_channels)
self.soft = nn.Softmax(-2)
self.relu = nn.ReLU(inplace=True)
for m in self.modules():
if isinstance(m, nn.Conv2d):
conv_init(m)
elif isinstance(m, nn.BatchNorm2d):
bn_init(m, 1)
bn_init(self.bn, 1e-6)
def forward(self, x):
y = None
if self.adaptive:
A = self.PA
else:
A = self.A.cuda(x.get_device())
for i in range(self.num_subset):
z = self.convs[i](x, A[i], self.alpha)
y = z + y if y is not None else z
y = self.bn(y)
y += self.down(x)
y = self.relu(y)
return y
class TCN_GCN_unit(nn.Module):
def __init__(self, in_channels, out_channels, A, stride=1, residual=True, adaptive=True, kernel_size=5, dilations=[1,2]):
super(TCN_GCN_unit, self).__init__()
self.gcn1 = unit_gcn(in_channels, out_channels, A, adaptive=adaptive)
self.tcn1 = MultiScale_TemporalConv(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilations=dilations,
residual=False)
self.relu = nn.ReLU(inplace=True)
if not residual:
self.residual = lambda x: 0
elif (in_channels == out_channels) and (stride == 1):
self.residual = lambda x: x
else:
self.residual = unit_tcn(in_channels, out_channels, kernel_size=1, stride=stride)
def forward(self, x):
y = self.relu(self.tcn1(self.gcn1(x)) + self.residual(x))
return y
class Model(nn.Module):
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3,
drop_out=0, adaptive=True):
super(Model, self).__init__()
if graph is None:
raise ValueError()
else:
Graph = import_class(graph)
self.graph = Graph(**graph_args)
A = self.graph.A # 3,25,25
self.num_class = num_class
self.num_point = num_point
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
base_channel = 64
self.l1 = TCN_GCN_unit(in_channels, base_channel, A, residual=False, adaptive=adaptive)
self.l2 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
self.l3 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
self.l4 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
self.l5 = TCN_GCN_unit(base_channel, base_channel*2, A, stride=2, adaptive=adaptive)
self.l6 = TCN_GCN_unit(base_channel*2, base_channel*2, A, adaptive=adaptive)
self.l7 = TCN_GCN_unit(base_channel*2, base_channel*2, A, adaptive=adaptive)
self.l8 = TCN_GCN_unit(base_channel*2, base_channel*4, A, stride=2, adaptive=adaptive)
self.l9 = TCN_GCN_unit(base_channel*4, base_channel*4, A, adaptive=adaptive)
self.l10 = TCN_GCN_unit(base_channel*4, base_channel*4, A, adaptive=adaptive)
#self.fc = nn.Linear(base_channel*4, num_class)
nn.init.normal_(self.fc.weight, 0, math.sqrt(2. / num_class))
bn_init(self.data_bn, 1)
if drop_out:
self.drop_out = nn.Dropout(drop_out)
else:
self.drop_out = lambda x: x
def forward(self, x):
if len(x.shape) == 3:
N, T, VC = x.shape
#x = x.view(N, T, self.num_point, -1).permute(0, 3, 1, 2).contiguous().unsqueeze(-1)
if x.size[2] == 50:
x = x.view(N,3, 2,self.num_points, T) # N;C;M;V;T
x = x.permute(0,1,4,3,2)
else:
container = torch.zeros(N,3,2,self.numpoints, T).cuda()
container[:,:,0,:,:]=x.view(N, 3, self.num_points, T)
x = contrainer
N, C, T, V, M = x.size()
#batchsize, channel, temporal, vertex=25, number of person
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
x = self.data_bn(x)
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
x = self.l1(x)
x = self.l2(x)
x = self.l3(x)
x = self.l4(x)
x = self.l5(x)
x = self.l6(x)
x = self.l7(x)
x = self.l8(x)
x = self.l9(x)
x = self.l10(x)
# N*M,C,T,V
c_new = x.size(1)
x = x.view(N, M, c_new, -1)
x = x.mean(3).mean(1)
x = self.drop_out(x)
return x