-
Notifications
You must be signed in to change notification settings - Fork 1
/
prompt.py
117 lines (101 loc) · 5.73 KB
/
prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
class Prompt(nn.Module):
def __init__(self, length=5, embed_dim=768, embedding_key='mean', prompt_init='uniform', prompt_pool=False,
prompt_key=False, pool_size=None, top_k=None, batchwise_prompt=False, prompt_key_init='uniform',):
super().__init__()
self.length = length
self.embed_dim = embed_dim
self.prompt_pool = prompt_pool
self.embedding_key = embedding_key
self.prompt_init = prompt_init
self.prompt_key = prompt_key
self.pool_size = pool_size
self.top_k = top_k
self.batchwise_prompt = batchwise_prompt
if self.prompt_pool:
prompt_pool_shape = (pool_size, length, embed_dim)
if prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
nn.init.uniform_(self.prompt, -1, 1)
# if using learnable prompt keys
if prompt_key:
key_shape = (pool_size, embed_dim)
if prompt_key_init == 'zero':
self.prompt_key = nn.Parameter(torch.zeros(key_shape))
elif prompt_key_init == 'uniform':
self.prompt_key = nn.Parameter(torch.randn(key_shape))
nn.init.uniform_(self.prompt_key, -1, 1)
else:
# else use mean of prompt as key
# only compatible with prompt, not prefix
prompt_mean = torch.mean(self.prompt, dim=1)
self.prompt_key = prompt_mean
def l2_normalize(self, x, dim=None, epsilon=1e-12):
"""Normalizes a given vector or matrix."""
square_sum = torch.sum(x ** 2, dim=dim, keepdim=True)
x_inv_norm = torch.rsqrt(torch.maximum(square_sum, torch.tensor(epsilon, device=x.device)))
return x * x_inv_norm
def forward(self, x_embed, prompt_mask=None, cls_features=None):
out = dict()
if self.prompt_pool:
if self.embedding_key == 'mean':
x_embed_mean = torch.mean(x_embed, dim=1)
elif self.embedding_key == 'max':
x_embed_mean = torch.max(x_embed, dim=1)[0]
elif self.embedding_key == 'mean_max':
x_embed_mean = torch.max(x_embed, dim=1)[0] + 2 * torch.mean(x_embed, dim=1)
elif self.embedding_key == 'cls':
if cls_features is None:
x_embed_mean = torch.max(x_embed, dim=1)[0] # B, C
else:
x_embed_mean = cls_features
else:
raise NotImplementedError("Not supported way of calculating embedding keys!")
prompt_norm = self.l2_normalize(self.prompt_key, dim=1) # Pool_size, C
x_embed_norm = self.l2_normalize(x_embed_mean, dim=1) # B, C
similarity = torch.matmul(x_embed_norm, prompt_norm.t()) # B, Pool_size
if prompt_mask is None:
_, idx = torch.topk(similarity, k=self.top_k, dim=1) # B, top_k
if self.batchwise_prompt:
prompt_id, id_counts = torch.unique(idx, return_counts=True, sorted=True)
# In jnp.unique, when the 'size' is specified and there are fewer than the indicated number of elements,
# the remaining elements will be filled with 'fill_value', the default is the minimum value along the specified dimension.
# Unless dimension is specified, this will be flattend if it is not already 1D.
if prompt_id.shape[0] < self.pool_size:
prompt_id = torch.cat([prompt_id, torch.full((self.pool_size - prompt_id.shape[0],), torch.min(idx.flatten()), device=prompt_id.device)])
id_counts = torch.cat([id_counts, torch.full((self.pool_size - id_counts.shape[0],), 0, device=id_counts.device)])
_, major_idx = torch.topk(id_counts, k=self.top_k) # top_k
major_prompt_id = prompt_id[major_idx] # top_k
# expand to batch
idx = major_prompt_id.expand(x_embed.shape[0], -1) # B, top_k
else:
idx = prompt_mask # B, top_k
batched_prompt_raw = self.prompt[idx] # B, top_k, length, C
batch_size, top_k, length, c = batched_prompt_raw.shape
batched_prompt = batched_prompt_raw.reshape(batch_size, top_k * length, c) # B, top_k * length, C
out['prompt_idx'] = idx
# Debugging, return sim as well
out['prompt_norm'] = prompt_norm
out['x_embed_norm'] = x_embed_norm
out['similarity'] = similarity
# Put pull_constraint loss calculation inside
batched_key_norm = prompt_norm[idx] # B, top_k, C
out['selected_key'] = batched_key_norm
x_embed_norm = x_embed_norm.unsqueeze(1) # B, 1, C
sim = batched_key_norm * x_embed_norm # B, top_k, C
reduce_sim = torch.sum(sim) / x_embed.shape[0] # Scalar
out['reduce_sim'] = reduce_sim
else:
if self.prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(self.length, self.embed_dim))
elif self.prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(self.length, self.embed_dim))
nn.init.uniform_(self.prompt)
batched_prompt = self.prompt.unsqueeze(0).expand(x_embed.shape[0], -1, -1)
# The input with the prompt concatenated to the front. [B, prompt+token, C]
out['total_prompt_len'] = batched_prompt.shape[1]
out['prompted_embedding'] = torch.cat([batched_prompt, x_embed], dim=1)
return out