-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
443 lines (370 loc) · 15.4 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from main import *
class StandStillAgent:
def __init__(self, maze_map):
self.start_position = None
def get_next_step(self):
return self.start_position
class RandomAroundInitialAgent:
def __init__(self, maze_map):
self.maze_map = maze_map
self.start_position = None
self.current_position = None
def get_next_step(self):
if self.current_position != self.start_position:
self.current_position = self.start_position
else:
random_number = randrange(0, 3, 1)
coor = None
if random_number == 0:
coor = (self.start_position[0] + 1, self.start_position[1])
if self.maze_map[coor[0]][coor[1]] != 1:
self.current_position = coor
if random_number == 1:
coor = (self.start_position[0] - 1, self.start_position[1])
if self.maze_map[coor[0]][coor[1]] != 1:
self.current_position = coor
if random_number == 2:
coor = (self.start_position[0], self.start_position[1] + 1)
if self.maze_map[coor[0]][coor[1]] != 1:
self.current_position = coor
if random_number == 3:
coor = (self.start_position[0], self.start_position[1] - 1)
if self.maze_map[coor[0]][coor[1]] != 1:
self.current_position = coor
return self.current_position
class AStarGhostAgent:
def __init__(self, maze_map):
self.map = maze_map
self.start_node = None
self.end_node = None
def get_next_step(self):
path = self.__a_star(self.map, self.start_node, self.end_node)
if path is None:
return self.start_node
if len(path) > 1:
self.start_node = path[1]
return path[1].position
return path[0].position
@staticmethod
def __euclidean_heuristic(from_pos, to_pos):
x = abs(from_pos.position[0] - to_pos.position[0])
y = abs(from_pos.position[1] - to_pos.position[1])
distance: float = sqrt((x * x) + (y * y))
return distance
# find least f node for A*
@staticmethod
def __find_least_f(open_list):
result = open_list[0]
for a in open_list:
if a.f < result.f:
result = a
return result
@staticmethod
def __generate_childs(maze_map, current_node):
childs = []
x = current_node.position[0]
y = current_node.position[1]
child = maze_map[x][y + 1]
if (child is not WALL) or (child is FOOD):
childs.append(Node(parent=current_node,
position=(x, y + 1)))
child = maze_map[x][y - 1]
if (child is not WALL) or (child is FOOD):
childs.append(Node(parent=current_node,
position=(x, y - 1)))
child = maze_map[x + 1][y]
if (child is not WALL) or (child is FOOD):
childs.append(Node(parent=current_node,
position=(x + 1, y)))
child = maze_map[x - 1][y]
if (child is not WALL) or (child is FOOD):
childs.append(Node(parent=current_node,
position=(x - 1, y)))
return childs
@staticmethod
# a* search alg
def __a_star(maze_map, start_node, end_node):
open_list = []
closed_list = []
path = []
if start_node is not end_node:
open_list.append(start_node)
while len(open_list) > 0:
current_node = AStarGhostAgent.__find_least_f(open_list)
closed_list.append(open_list.pop(open_list.index(current_node)))
if current_node == end_node:
while current_node is not None:
path.append(current_node)
current_node = current_node.parent
return path[::-1]
childs = AStarGhostAgent.__generate_childs(maze_map, current_node)
for child in childs:
if child in closed_list:
continue
child.g = current_node.g + 1
child.h = AStarGhostAgent.__euclidean_heuristic(child, end_node)
child.f = child.g + child.h
for node in open_list:
if child == node and child.g > current_node.g:
continue
open_list.append(child)
class AStarAgent:
def __init__(self, maze_map, start_pos, monsters_list):
self.map = maze_map
self.monsters = None
if not monsters_list:
self.monsters = []
else:
self.monsters = monsters_list
start_node = Node(position=start_pos)
end_node = Node(position=AStarAgent.__find_food(maze_map))
self.path = self.__a_star(self.map, start_node, end_node, self.monsters)
self.start_pos = start_pos
self.stepCount = -1
def get_next_step(self):
self.stepCount += 1
if self.path is None:
return Node(position=self.start_pos)
return self.path[self.stepCount]
@staticmethod
def __manhattan_heuristic(from_pos, to_pos):
return abs(from_pos.position[0] - to_pos.position[0]) \
+ abs(from_pos.position[1] - to_pos.position[1])
# find least f node for A*
@staticmethod
def __find_least_f(open_list):
result = open_list[0]
for a in open_list:
if a.f < result.f:
result = a
return result
@staticmethod
# find least f node for A*
def __generate_childs(maze_map, monsters, current_node):
childs = []
x = current_node.position[0]
y = current_node.position[1]
monster_positions = [monster.position for monster in monsters]
child = maze_map[x][y + 1]
if ((child == 0) or (child == 2)) and ((x, y + 1) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x, y + 1)))
child = maze_map[x][y - 1]
if ((child == 0) or (child == 2)) and ((x, y - 1) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x, y - 1)))
child = maze_map[x + 1][y]
if ((child == 0) or (child == 2)) and ((x + 1, y) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x + 1, y)))
child = maze_map[x - 1][y]
if ((child == 0) or (child == 2)) and ((x - 1, y) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x - 1, y)))
return childs
@staticmethod
def __find_food(maze_map):
if maze_map is None:
return None
height = len(maze_map)
width = len(maze_map[0])
for i in range(height):
for j in range(width):
if maze_map[i][j] == FOOD:
return i, j
return None
@staticmethod
# a* search alg
def __a_star(maze_map, start_node, end_node, monster_positions):
open_list = []
closed_list = []
path = []
if monster_positions is None:
monster_positions = []
if start_node is not end_node:
open_list.append(start_node)
while len(open_list) > 0:
current_node = AStarAgent.__find_least_f(open_list)
closed_list.append(open_list.pop(open_list.index(current_node)))
if current_node == end_node:
while current_node is not None:
path.append(current_node)
current_node = current_node.parent
return path[::-1]
childs = AStarAgent.__generate_childs(maze_map, monster_positions, current_node)
for child in childs:
if child in closed_list:
continue
child.g = current_node.g + 1
child.h = AStarAgent.__manhattan_heuristic(child, end_node)
child.f = child.g + child.h
for node in open_list:
if child == node and child.g > current_node.g:
continue
open_list.append(child)
def is_finished(self):
if self.path is None:
return True
return self.stepCount == len(self.path) - 1
class AStarFlexPacmanAgent:
def __init__(self, maze_map, start_pos, monsters_list):
self.is_confuse = False
self.map = maze_map
self.start_node = None
self.end_node = None
self.monsters = monsters_list
self.start_node = Node(position=start_pos)
self.end_node = AStarFlexPacmanAgent.__choose_food(self.start_node, self.map, self.monsters)
# self.path = self.__a_star(maze_map, self.start_node, self.end_node, self.monsters)
def get_next_step(self):
if self.start_node == self.end_node:
self.map = self.__update_map_and_food(self.start_node, self.map, self.monsters, True)
self.map = self.__update_map_and_food(self.start_node, self.map, self.monsters)
path = self.__a_star(self.map, self.start_node,
AStarFlexPacmanAgent.__choose_food(self.start_node, self.map, self.monsters),
self.monsters)
if path is None:
self.is_confuse = True
# # self.end_node = None
# path = self.__a_star(self.map, self.start_node,
# AStarFlexPacmanAgent.__choose_food(self.start_node, self.map, self.monsters),
# self.monsters)
# self.start_node = path[1]
# self.start_node.parent = None
# self.map = self.__update_map_and_food(self.start_node, self.map, self.monsters)
# return path[1]
self.start_node = path[1]
self.start_node.parent = None
self.map = self.__update_map_and_food(self.start_node, self.map, self.monsters)
return path[1]
@staticmethod
def __update_map_and_food(current_node, maze_map, monsters, is_feeded=False):
new_map = maze_map
x = current_node.position[0]
y = current_node.position[1]
if maze_map[x][y] == FOOD:
new_map[x][y] = WALL - 1 # Road
height = len(maze_map)
width = len(maze_map[0])
monster_position = [monster.position for monster in monsters]
for i in range(height):
for j in range(width):
if (maze_map[i][j] == MONSTER) and ((i, j) not in monster_position):
new_map[i][j] = 0
if is_feeded:
new_map[x][y] = 0
return new_map
@staticmethod
def __choose_food(start_node, maze_map, monsters):
foods = AStarFlexPacmanAgent.__find_foods(maze_map)
result = None
if foods is None:
return None
monsters_position = [monster.position for monster in monsters]
if len(foods) != 0:
result = foods[0]
else:
return None
# for food in foods:
# if (food.position[0], food.position[1]) not in monsters_position:
# result = food
# break
# monsters_position = [monster.position for monster in monsters]
# while (result.position[0], result.position[1]) not in monsters_position:
# result = foods[foods.index(result) + 1]
path =[]
for food in foods:
if AStarFlexPacmanAgent.__manhattan_heuristic(start_node, food) \
< AStarFlexPacmanAgent.__manhattan_heuristic(start_node, result):
for monster in monsters:
path = AStarFlexPacmanAgent.__a_star(maze_map, start_node,
food, monsters)
if (path is not None):
result = food
return result
@staticmethod
def __find_foods(maze_map):
foods = []
if maze_map is None:
return None
height = len(maze_map)
width = len(maze_map[0])
for i in range(height):
for j in range(width):
if maze_map[i][j] == FOOD:
foods.append(Node(position=(i, j)))
return foods
@staticmethod
def __manhattan_heuristic(from_pos, to_pos):
return abs(from_pos.position[0] - to_pos.position[0]) \
+ abs(from_pos.position[1] - to_pos.position[1])
# find least f node for A*
@staticmethod
def __find_least_f(open_list):
result = open_list[0]
for a in open_list:
if a.f < result.f:
result = a
return result
@staticmethod
def __generate_childs(maze_map, monsters, current_node):
childs = []
x = current_node.position[0]
y = current_node.position[1]
monster_positions = [monster.position for monster in monsters]
child = maze_map[x][y + 1]
if ((child is not WALL) or (child is FOOD)) and ((x, y + 1) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x, y + 1)))
child = maze_map[x][y - 1]
if ((child is not WALL) or (child is FOOD)) and ((x, y - 1) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x, y - 1)))
child = maze_map[x + 1][y]
if ((child is not WALL) or (child is FOOD)) and ((x + 1, y) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x + 1, y)))
child = maze_map[x - 1][y]
if ((child is not WALL) or (child is FOOD)) and ((x - 1, y) not in monster_positions):
childs.append(Node(parent=current_node,
position=(x - 1, y)))
return childs
@staticmethod
# a* search alg
def __a_star(maze_map, start_node, end_node, monsters):
open_list = []
closed_list = []
path = []
if start_node is not end_node:
open_list.append(start_node)
if start_node is end_node:
path = None
return path
while len(open_list) > 0:
current_node = AStarFlexPacmanAgent.__find_least_f(open_list)
closed_list.append(open_list.pop(open_list.index(current_node)))
if current_node == end_node:
while current_node is not None:
path.append(current_node)
current_node = current_node.parent
return path[::-1]
childs = AStarFlexPacmanAgent.__generate_childs(maze_map, monsters, current_node)
for child in childs:
if child in closed_list:
continue
child.g = current_node.g + 1
child.h = AStarFlexPacmanAgent.__manhattan_heuristic(child, end_node)
child.f = child.g + child.h
for node in open_list:
if child == node and child.g > current_node.g:
continue
open_list.append(child)
# For Testing Purporse
def is_finished(self):
if self.__choose_food(self.start_node, self.map, self.monsters) is None:
return True
if self.start_node in self.monsters:
return True
if (self.is_confuse == True):
return True
return False