forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline-deploy-demo.py
123 lines (102 loc) · 5.02 KB
/
pipeline-deploy-demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pipeline.backend.pipeline import PipeLine
from pipeline.component import DataTransform
from pipeline.component import Evaluation
from pipeline.component import HeteroLR
from pipeline.component import Intersection
from pipeline.component import Reader
from pipeline.interface import Data
def main():
# parties config
guest = 9999
host = 10000
arbiter = 10000
# specify input data name & namespace in database
guest_train_data = {"name": "breast_hetero_guest", "namespace": "experiment"}
host_train_data = {"name": "breast_hetero_host", "namespace": "experiment"}
guest_eval_data = {"name": "breast_hetero_guest", "namespace": "experiment"}
host_eval_data = {"name": "breast_hetero_host", "namespace": "experiment"}
# initialize pipeline
pipeline = PipeLine()
# set job initiator
pipeline.set_initiator(role="guest", party_id=guest)
# set participants information
pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)
# define Reader components to read in data
reader_0 = Reader(name="reader_0")
# configure Reader for guest
reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data)
# configure Reader for host
reader_0.get_party_instance(role="host", party_id=host).component_param(table=host_train_data)
# define DataTransform component
data_transform_0 = DataTransform(name="data_transform_0")
# get DataTransform party instance of guest
data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role="guest", party_id=guest)
# configure DataTransform for guest
data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense")
# get and configure DataTransform party instance of host
data_transform_0.get_party_instance(role="host", party_id=host).component_param(with_label=False)
# define Intersection components
intersection_0 = Intersection(name="intersection_0")
# define HeteroLR component
hetero_lr_0 = HeteroLR(name="hetero_lr_0",
early_stop="diff",
learning_rate=0.15,
optimizer="rmsprop",
max_iter=10,
callback_param={"callbacks": ["ModelCheckpoint"]})
# add components to pipeline, in order of task execution
pipeline.add_component(reader_0)
pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
# set data input sources of intersection components
pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
# set train data of hetero_lr_0 component
pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data))
# compile pipeline once finished adding modules, this step will form conf and dsl files for running job
pipeline.compile()
# fit model
pipeline.fit()
# query component summary
import json
print(json.dumps(pipeline.get_component("hetero_lr_0").get_summary(), indent=4))
# predict
# deploy required components
pipeline.deploy_component([data_transform_0, intersection_0, hetero_lr_0])
# initiate predict pipeline
predict_pipeline = PipeLine()
# define new data reader
reader_1 = Reader(name="reader_1")
reader_1.get_party_instance(role="guest", party_id=guest).component_param(table=guest_eval_data)
reader_1.get_party_instance(role="host", party_id=host).component_param(table=host_eval_data)
# define evaluation component
evaluation_0 = Evaluation(name="evaluation_0")
evaluation_0.get_party_instance(role="guest", party_id=guest).component_param(need_run=True, eval_type="binary")
evaluation_0.get_party_instance(role="host", party_id=host).component_param(need_run=False)
# add data reader onto predict pipeline
predict_pipeline.add_component(reader_1)
# add selected components from train pipeline onto predict pipeline
# specify data source
predict_pipeline.add_component(
pipeline, data=Data(
predict_input={
pipeline.data_transform_0.input.data: reader_1.output.data}))
# add evaluation component to predict pipeline
predict_pipeline.add_component(evaluation_0, data=Data(data=pipeline.hetero_lr_0.output.data))
# run predict model
predict_pipeline.predict(components_checkpoint={"hetero_lr_0": {"step_index": 8}})
if __name__ == "__main__":
main()