-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlapinpainting.cpp
736 lines (600 loc) · 25.9 KB
/
lapinpainting.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/****************************************************************************
- Codename: Laplacian Patch-Based Image Synthesis (CVPR 2016)
- Writers: Joo Ho Lee([email protected]), Min H. Kim ([email protected])
- Institute: KAIST Visual Computing Laboratory
- Bibtex:
@InProceedings{LeeChoiKim:CVPR:2016,
author = {Joo Ho Lee and Inchang Choi and Min H. Kim},
title = {Laplacian Patch-Based Image Synthesis},
booktitle = {Proc. IEEE Computer Vision and Pattern Recognition (CVPR 2016)},
publisher = {IEEE},
address = {Las Vegas, USA},
year = {2016},
pages = {2727--2735},
}
- Joo Ho Lee and Min H. Kim have developed this software and related documentation
(the "Software"); confidential use in source form of the Software,
without modification, is permitted provided that the following
conditions are met:
1. Neither the name of the copyright holder nor the names of any
contributors may be used to endorse or promote products derived from
the Software without specific prior written permission.
2. The use of the software is for Non-Commercial Purposes only. As
used in this Agreement, "Non-Commercial Purpose" means for the
purpose of education or research in a non-commercial organisation
only. "Non-Commercial Purpose" excludes, without limitation, any use
of the Software for, as part of, or in any way in connection with a
product (including software) or service which is sold, offered for
sale, licensed, leased, published, loaned or rented. If you require
a license for a use excluded by this agreement,
please email [[email protected]].
- License: GNU General Public License Usage
Alternatively, this file may be used under the terms of the GNU General
Public License version 3.0 as published by the Free Software Foundation
and appearing in the file LICENSE.GPL included in the packaging of this
file. Please review the following information to ensure the GNU General
Public License version 3.0 requirements will be met:
http://www.gnu.org/copyleft/gpl.html.
- Warranty: KAIST-VCLAB MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE
SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. KAIST-VCLAB SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
THIS SOFTWARE OR ITS DERIVATIVES
*****************************************************************************/
#include "lapinpainting.h"
void displayLABMat(cv::Mat a, char *title, cv::Rect ROI){
cv::Mat tmp;
a.convertTo(tmp, CV_32FC3);
cvtColor(tmp, tmp, CV_Lab2RGB);
tmp=tmp*255;
tmp.convertTo(tmp,CV_8UC3);
cv::imshow(title, tmp);
cv::waitKey();
}
__inline double computePatchError(double *patcha, double *patchb, int psz){
int pixeln = psz*psz*3; // 3 channels
double sum = 0;
for(int i = 0 ; i < pixeln; i++)
sum+=(patcha[i]-patchb[i])*(patcha[i]-patchb[i]);
return sum;
}
__inline double computePatchErrorLap(std::vector<double*> &colorpatches, std::vector<double*> &colorfpatches,int x, int y, int psz, double lambda){
int pixeln = psz*psz*3; // 3 channels
double *patcha, *patchb, *patchfa, *patchfb;
patcha = (double*)colorpatches[x];
patchb = (double*)colorpatches[y];
patchfa = (double*)colorfpatches[x];
patchfb = (double*)colorfpatches[y];
double sum = 0;
for(int i = 0 ; i < pixeln; i++)
sum += (1-lambda)*(patcha[i]-patchb[i])*(patcha[i]-patchb[i]);
for(int i = 0 ; i < pixeln; i++)
sum += (lambda)*(patchfa[i]-patchfb[i])*(patchfa[i]-patchfb[i]);
return sum;
}
void fixDownsampledMaskMat(cv::Mat mask){
double TT = 0.6;
double *maskptr = (double*) mask.data;
for(int i=0;i<mask.rows;i++){
for(int j=0;j<mask.cols;j++){
int ndx = i*mask.cols+j;
if(maskptr[ndx]>TT){
maskptr[ndx]=1;
}
else{
maskptr[ndx]=0;
}
}
}
}
void fixDownsampledMaskMatColorMat(cv::Mat mask,cv::Mat color){
double TT = 0.6;
double *maskptr = (double*) mask.data;
double *colorptr = (double*) color.data;
for(int i=0;i<mask.rows;i++){
for(int j=0;j<mask.cols;j++){
int ndx = i*mask.cols+j;
if(maskptr[ndx]>TT){
maskptr[ndx]=1;
colorptr[3*ndx]=0;
colorptr[3*ndx+1]=0;
colorptr[3*ndx+2]=0;
}
else{
colorptr[3*ndx]=colorptr[3*ndx]/(1-maskptr[ndx]);
colorptr[3*ndx+1]=colorptr[3*ndx+1]/(1-maskptr[ndx]);
colorptr[3*ndx+2]=colorptr[3*ndx+2]/(1-maskptr[ndx]);
maskptr[ndx]=0;
}
}
}
}
void LaplacianInpainting::constructLaplacianPyrMask(std::vector<cv::Mat> &gpyr, std::vector<cv::Mat> &upyr, std::vector<cv::Mat> &fpyr,cv::Mat mask,cv::Mat &img){
cv::Mat prvimg, curimg, curfimg, upimg;
cv::Mat prvmask, curmask, upmask;
gpyr.push_back(img);
prvimg = img;
prvmask = mask;
for(;prvimg.cols>=2*minsize_&&prvimg.rows>=2*minsize_;){
cv::pyrDown(prvimg, curimg, cv::Size(prvimg.cols/2, prvimg.rows/2));
cv::pyrUp(curimg, upimg, cv::Size(curimg.cols*2, curimg.rows*2));
cv::pyrDown(prvmask, curmask, cv::Size(prvimg.cols/2, prvimg.rows/2));
cv::pyrUp(curmask, upmask, cv::Size(curimg.cols*2, curimg.rows*2));
// fixDownsampledMaskColorMat(upmask, upimg);
// fixDownsampledMaskColorMat(curmask, curimg);
curfimg = prvimg - upimg;
gpyr.push_back(curimg);
upyr.push_back(upimg);
fpyr.push_back(curfimg);
//displayLABMat(curimg, "gaussian", cv::Rect(0, 0, curimg.rows, curimg.cols));
//displayLABMat(upimg, "up gaussian", cv::Rect(0, 0, curimg.rows, curimg.cols));
//displayLABMat(curfimg, "lap", cv::Rect(0, 0, curimg.rows, curimg.cols));
prvimg=curimg;
prvmask=curmask;
}
}
void LaplacianInpainting::constructLaplacianPyr(std::vector<cv::Mat> &gpyr, std::vector<cv::Mat> &upyr, std::vector<cv::Mat> &fpyr,cv::Mat &img){
cv::Mat prvimg, curimg, curfimg, upimg;
gpyr.push_back(img.clone());
prvimg = img.clone();
for(;prvimg.cols>=2*minsize_&&prvimg.rows>=2*minsize_;){
cv::pyrDown(prvimg, curimg, cv::Size(prvimg.cols/2, prvimg.rows/2));
cv::pyrUp(curimg, upimg, cv::Size(curimg.cols*2, curimg.rows*2));
curfimg = prvimg - upimg;
gpyr.push_back(curimg);
upyr.push_back(upimg);
fpyr.push_back(curfimg);
//displayLABMat(curimg, "gaussian", cv::Rect(0, 0, curimg.rows, curimg.cols));
//displayLABMat(upimg, "up gaussian", cv::Rect(0, 0, curimg.rows, curimg.cols));
//displayLABMat(curfimg, "lap", cv::Rect(0, 0, curimg.rows, curimg.cols));
prvimg=curimg;
}
}
void LaplacianInpainting::findNearestNeighborLap(cv::Mat nnf,cv::Mat nnferr, bool *patch_type, cv::Mat colormat, cv::Mat colorfmat, cv::Mat maskmat, std::pair<int, int> size,int emiter){
/*Patch preparation*/
std::vector<double*> colorpatches,colorfpatches;
srand(time(NULL));
double *maskptr = (double*) maskmat.data;
double *colorptr = (double*) colormat.data;
double *colorfptr = (double*) colorfmat.data;
double errmin, errmax;
int tmph = size.first - psz_ + 1; //we ignore
int tmpw = size.second - psz_ + 1;
int randomcnt=0, propagationcnt=0;
int lurow,lucol,rdrow, rdcol;
lurow = tmph;
lucol = tmpw;
rdrow = 0;
rdcol = 0;
double *colorpatch, *colorfpatch;
//collect patches
for(int i=0;i<tmph;i++){
for(int j=0;j<tmpw;j++){
int ndx = i * size.second + j;
int flag=0;
colorpatch = (double*)malloc(sizeof(double) * psz_ * psz_ * 3);
colorfpatch = (double*)malloc(sizeof(double) * psz_ * psz_ * 3);
//copy patch
for(int i2=0;i2<psz_;i2++){
for(int j2=0;j2<psz_;j2++){
int ndx2 = (i+i2) * size.second + (j+j2);
int pndx = i2 * psz_ + j2;
if(maskptr[ndx2]>0.00)
flag=1;
colorpatch [3 * pndx ] = colorptr[3 * ndx2];
colorpatch [3 * pndx + 1] = colorptr[3 * ndx2 + 1];
colorpatch [3 * pndx + 2] = colorptr[3 * ndx2 + 2];
colorfpatch [3 * pndx ] = colorfptr[3 * ndx2];
colorfpatch [3 * pndx + 1] = colorfptr[3 * ndx2 + 1];
colorfpatch [3 * pndx + 2] = colorfptr[3 * ndx2 + 2];
}
}
if(flag){ // find bounding box
rdrow = std::max(rdrow, i);
rdcol = std::max(rdcol, j);
lurow = std::min(lurow, i);
lucol = std::min(lucol, j);
}
patch_type [ndx] = flag;//If variable flag is one, there is a mask pixel in the patch.
colorpatches.push_back(colorpatch);//Note that index for patches is i*tmpw + j since we only take inner patches.
colorfpatches.push_back(colorfpatch);//feature patch
}
}
rdrow = std::min(rdrow+2*psz_, tmph-1);
rdcol = std::min(rdcol+2*psz_, tmpw-1);
lurow = std::max(lurow-2*psz_, 0);
lucol = std::max(lucol-2*psz_, 0);
nnfcount_=(rdcol-lucol)*(rdrow-lurow);
int* nnfptr = (int*)nnf.data;
double* nnferrptr = (double*)nnferr.data;
/*Initialize NNF*/
for(int i=lurow;i<=rdrow;i++){
for(int j=lucol;j<=rdcol;j++){
int ndx = i * size.second + j;
int newrow, newcol;
double newerr;
//nnferrptr[ndx] = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, nnfptr[ndx*2] * tmpw +nnfptr[ndx*2 + 1], psz_, lambda_);
nnferrptr[ndx] = 50000;
do{
newrow = rand() % tmph;//row
newcol = rand() % tmpw;//col
}while(patch_type[newrow*size.second+newcol]||(newrow==i&&newcol==j));//Until patch is from a source patch. If the pointed patch is a target, reset values.
newerr = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, newrow * tmpw + newcol, psz_, lambda_);
if(emiter == -1){
nnfptr[ndx*2 ]=newrow;//row
nnfptr[ndx*2 + 1]=newcol;//col
nnferrptr[ndx] = newerr;
}
else{
if(nnferrptr[ndx] >newerr || patch_type[nnfptr[ndx*2]*size.second+nnfptr[ndx*2+1]]){
nnfptr[ndx*2 ]=newrow;//row
nnfptr[ndx*2 + 1]=newcol;//col
nnferrptr[ndx] = newerr;
}
}
}
}
//cv::minMaxLoc(nnferr, &errmin, &errmax);
//printf("max error: %lf\n", errmax);
//cv::imshow("nnf error", nnferr/errmax);
//cv::waitKey();
/*Patchmatch start*/
for(int patchiter = 0; patchiter < patchmatch_iter_; patchiter++){
/*random search*/
for(int i=lurow;i<=rdrow;i++){
for(int j=lucol;j<=rdcol;j++){
int vrow, vcol;
int ndx = i*size.second + j;
int w_row = tmph, w_col = tmpw;
double alpha = 0.5;
int cur_row, cur_col;
double newerr;
int row1, row2, col1, col2;
int ranr, ranc;
vrow = nnfptr[ndx*2];
vcol = nnfptr[ndx*2+1];
cur_row = w_row;
cur_col = w_col;
for(int h=0;cur_row>=1&&cur_col>=1;h++){
//
row1 = vrow - cur_row;
row2 = vrow + cur_row+1;
col1 = vcol - cur_col;
col2 = vcol + cur_col+1;
//cropping
if(row1<0) row1 = 0;
if(row2>tmph) row2 = tmph;
if(col1<0) col1 = 0;
if(col2>tmpw) col2 = tmpw;
for(int k = 0 ; k < rs_iter_;k++){
do{
ranr = (rand() % (row2 - row1)) + row1;//2~4 2,5 3 0,1,2 + 2
ranc = (rand() % (col2 - col1)) + col1;
}while(patch_type[ranr * size.second + ranc]);
newerr = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, ranr * tmpw + ranc, psz_, lambda_);
if(newerr < nnferrptr[ndx]){
randomcnt++;
nnfptr[ndx*2 ] = ranr;//row
nnfptr[ndx*2 + 1] = ranc;//col
nnferrptr[ndx] = newerr;
}
}
//shrink a window size
cur_row >>= 1;
cur_col >>= 1;
}
}
}
if(patchiter&1){//odd leftup order
for(int i=rdrow;i>=lurow;i--){
for(int j=rdcol;j>=lucol;j--){
// for(int i=tmph-1;i>=0;i--){
// for(int j=tmpw-1;j>=0;j--){
int vrow, vcol;
int ndx = i*size.second + j;
int w_row = tmph, w_col = tmpw;
double alpha = 0.5;
int cur_row, cur_col;
double newerr;
int row1, row2, col1, col2;
int ranr, ranc;
int vrowright, vcolright;
int vrowdown, vcoldown;
/*propagation*/
if(j<rdcol){//left
vrowright = nnfptr[ndx * 2 + 2];
vcolright = nnfptr[ndx * 2 + 3];
if(vcolright>0)
--vcolright;
if(!patch_type[vrowright*size.second + vcolright]){
newerr = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, vrowright * tmpw + vcolright, psz_, lambda_);
if(newerr < nnferrptr[ndx]){
propagationcnt++;
nnfptr[ndx*2 ] = vrowright;//row
nnfptr[ndx*2 + 1] = vcolright;//col
nnferrptr[ndx] = newerr;
}
}
}
if(i<rdrow){//right
vrowdown = nnfptr[(ndx+size.second) * 2 ];
vcoldown = nnfptr[(ndx+size.second) * 2 + 1];
if(vrowdown>0)
--vrowdown;
if(!patch_type[vrowdown*size.second + vcoldown]){
newerr = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, vrowdown * tmpw + vcoldown, psz_, lambda_);
if(newerr < nnferrptr[ndx]){
propagationcnt++;
nnfptr[ndx*2 ] = vrowdown;//row
nnfptr[ndx*2 + 1] = vcoldown;//col
nnferrptr[ndx] = newerr;
}
}
}
}
}
}
else{//even
for(int i=lurow;i<=rdrow;i++){
for(int j=lucol;j<=rdcol;j++){
// for(int i=0;i<tmph;i++){//right down order
// for(int j=0;j<tmpw;j++){
int vrow, vcol;
int ndx = i*size.second + j;
int w_row = tmph, w_col = tmpw;
double alpha = 0.5;
int cur_row, cur_col;
double newerr;
int row1, row2, col1, col2;
int ranr, ranc;
int vrowleft, vcolleft;
int vrowup, vcolup;
/*propagation*/
if(j>lucol){//left
vrowleft = nnfptr[ndx * 2 - 2];
vcolleft = nnfptr[ndx * 2 - 1];
if(vcolleft<tmpw-1)
++vcolleft;
if(!patch_type[vrowleft*size.second + vcolleft]){
newerr = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, vrowleft * tmpw + vcolleft, psz_, lambda_);
if(newerr < nnferrptr[ndx]){
propagationcnt++;
nnfptr[ndx*2 ] = vrowleft;//row
nnfptr[ndx*2 + 1] = vcolleft;//col
nnferrptr[ndx] = newerr;
}
}
}
if(i>lurow){//up
vrowup = nnfptr[(ndx-size.second) * 2 ];
vcolup = nnfptr[(ndx-size.second) * 2 + 1];
if(vrowup<tmph-1)
++vrowup;
if(!patch_type[vrowup*size.second + vcolup]){
newerr = computePatchErrorLap(colorpatches, colorfpatches, i*tmpw+j, vrowup * tmpw + vcolup, psz_, lambda_);
if(newerr < nnferrptr[ndx]){
propagationcnt++;
nnfptr[ndx*2 ] = vrowup;//row
nnfptr[ndx*2 + 1] = vcolup;//col
nnferrptr[ndx] = newerr;
}
}
}
}
}
}
}
while(!colorpatches.empty()){
free(colorpatches.back());
colorpatches.pop_back();
}
while(!colorfpatches.empty()){
free(colorfpatches.back());
colorfpatches.pop_back();
}
printf("(pu: %d, ru: %d)", propagationcnt, randomcnt);
}
void LaplacianInpainting::colorVoteLap(cv::Mat nnf, cv::Mat nnferr, bool *patch_type, cv::Mat colormat, cv::Mat colorfmat, cv::Mat maskmat, std::pair<int, int> size){
int tmph = size.first - psz_ + 1;
int tmpw = size.second - psz_ + 1;
cv::Mat weight;
cv::Mat colorsum, colorfsum;
cv::Mat dist;
cv::Mat similarity;
cv::Mat squarednnferr;
double nnfavg, nnfsqavg, variance;
double *nnferrptr = (double*) nnferr.data;
double maskcnt = 0;
nnfavg = 0;
nnfsqavg = 0;
nnfavg = cv::sum(nnferr).val[0];
cv::multiply(nnferr,nnferr,squarednnferr);
nnfsqavg = cv::sum(squarednnferr).val[0];
nnfavg /= nnfcount_;
nnfsqavg /= nnfcount_;
variance = nnfsqavg - nnfavg * nnfavg;
// printf("variance: %lf\n", variance);
//Wexler's similarity function
//cv::exp( - nnferr / (2.0 * (nnfavg + 0.68 * sqrt(variance)) * (nnfavg + 0.68 * sqrt(variance)) * siminterval_), similarity);//0.68 percentile
//ours
cv::exp( - nnferr / (2.0 * (nnfavg + 0.68 * sqrt(variance)) * siminterval_), similarity);//0.68 percentile
double *colorptr = (double*) colormat.data;
double *colorfptr = (double*) colorfmat.data;
double *similarityptr = (double*) similarity.data;
maskmat.convertTo(maskmat, CV_8UC1);
cv::distanceTransform(maskmat, dist, CV_DIST_L1, 3);
//Wexler's distance-weight function
//dist = dist * log(gamma_) * -1;
//cv::exp(dist, dist);
//ours
pow(dist, -1 * gamma_, dist);
weight = cv::Mat::zeros(size.first, size.second, CV_64FC1);
colorsum = cv::Mat::zeros(size.first, size.second, CV_64FC3);
colorfsum = cv::Mat::zeros(size.first, size.second, CV_64FC3);
double *weightptr = (double*) weight.data;
double *colorsumptr = (double*) colorsum.data;
double *colorfsumptr = (double*) colorfsum.data;
float *distptr = (float*) dist.data;
int *nnfptr = (int*) nnf.data;
unsigned char *maskptr = (unsigned char*) maskmat.data;
for(int i=0;i<size.first;i++){
for(int j=0;j<size.second;j++){
int ndx = i*size.second + j;
if(maskptr[ndx]==0)
distptr[ndx]=highconfidence_;
}
}
for(int i=0;i<tmph;i++){
for(int j=0;j<tmpw;j++){
int ndx= i*size.second+j;
int patchcenter_ndx= (i+(psz_>>1))*size.second+j+(psz_>>1);
double alpha = 0.0;
#ifdef CENTERINMASK
if(maskptr[patchcenter_ndx]>0.0){
#else
if(patch_type[ndx]){//If a patch is a target patch
#endif
alpha = distptr[patchcenter_ndx];
//pixel by pixel
for(int i2=0;i2<psz_;i2++){
for(int j2=0;j2<psz_;j2++){
int ndx2 = (i+i2)*size.second + (j+j2);
int ndx3 = (nnfptr[2*ndx]+i2) * size.second + nnfptr[2*ndx+1]+j2;
weightptr[ndx2] += alpha * similarityptr[ndx];
colorsumptr[3*ndx2] += alpha * similarityptr[ndx] * colorptr[3*ndx3 ];
colorsumptr[3*ndx2+1] += alpha * similarityptr[ndx] * colorptr[3*ndx3+1];
colorsumptr[3*ndx2+2] += alpha * similarityptr[ndx] * colorptr[3*ndx3+2];
colorfsumptr[3*ndx2] += alpha * similarityptr[ndx] * colorfptr[3*ndx3 ];
colorfsumptr[3*ndx2+1] += alpha * similarityptr[ndx] * colorfptr[3*ndx3+1];
colorfsumptr[3*ndx2+2] += alpha * similarityptr[ndx] * colorfptr[3*ndx3+2];
}
}
}
}
}
//normalize
for(int i=0;i<size.first;i++){
for(int j=0;j<size.second;j++){
int ndx = i*size.second +j;
if(maskptr[ndx]>0.0){
colorptr [3*ndx] = colorsumptr[3*ndx] / weightptr[ndx];
colorptr [3*ndx+1] = colorsumptr[3*ndx+1] / weightptr[ndx];
colorptr [3*ndx+2] = colorsumptr[3*ndx+2] / weightptr[ndx];
colorfptr [3*ndx] = colorfsumptr[3*ndx] / weightptr[ndx];
colorfptr [3*ndx+1] = colorfsumptr[3*ndx+1] / weightptr[ndx];
colorfptr [3*ndx+2] = colorfsumptr[3*ndx+2] / weightptr[ndx];
}
}
}
// cv::imshow("color", colormat);
// cv::waitKey();
}
void LaplacianInpainting::upscaleImages(cv::Mat nnf, cv::Mat nnferr, bool *patch_type, cv::Mat colorfmat, cv::Mat dmaskmat, cv::Mat umaskmat){
std::pair<int, int> dsize (nnf.rows, nnf.cols), usize(colorfmat.rows, colorfmat.cols);
int dtmph = dsize.first - psz_ + 1;
int dtmpw = dsize.second - psz_ + 1;
cv::Mat weight;
cv::Mat colorfsum;
cv::Mat dist;
cv::Mat similarity;
cv::Mat squarednnferr;
double nnfavg, nnfsqavg, variance;
double *nnferrptr = (double*) nnferr.data;
double maskcnt = 0;
nnfavg = 0;
nnfsqavg = 0;
nnfavg = cv::sum(nnferr).val[0];
cv::multiply(nnferr,nnferr,squarednnferr);
nnfsqavg = cv::sum(squarednnferr).val[0];
nnfavg /= nnfcount_;
nnfsqavg /= nnfcount_;
variance = nnfsqavg - nnfavg * nnfavg;
//Wexler's similarity function
//cv::exp( - nnferr / (2.0 * (nnfavg + 0.68 * sqrt(variance)) * (nnfavg + 0.68 * sqrt(variance)) * siminterval_), similarity);//0.68 percentile
//ours
cv::exp( - nnferr / (2.0 * (nnfavg + 0.68 * sqrt(variance)) * siminterval_), similarity);//0.68 percentile
double *colorfptr = (double*) colorfmat.data;
double *similarityptr = (double*) similarity.data;
dmaskmat.convertTo(dmaskmat, CV_8UC1);
cv::distanceTransform(dmaskmat, dist, CV_DIST_L1, 3);
//Wexler's distance-weight function
//dist = dist * log(gamma_) * -1;
//cv::exp(dist, dist);
//ours
pow(dist, -1 * gamma_, dist);
weight = cv::Mat::zeros(usize.first, usize.second, CV_64FC1);
colorfsum = cv::Mat::zeros(usize.first, usize.second, CV_64FC3);
double *weightptr = (double*) weight.data;
double *colorfsumptr = (double*) colorfsum.data;
float *distptr = (float*) dist.data;
int *nnfptr = (int*) nnf.data;
unsigned char *dmaskptr = (unsigned char*) dmaskmat.data;
double *umaskptr = (double*) umaskmat.data;
for(int i=0;i<dsize.first;i++){
for(int j=0;j<dsize.second;j++){
int ndx = i*dsize.second + j;
if(!dmaskptr[ndx])
distptr[ndx]=highconfidence_;
}
}
for(int i=0;i<dtmph;i++){
for(int j=0;j<dtmpw;j++){
int dndx= i*dsize.second+j;
int undx= (2*i) * usize.second + 2*j;
int patchcenter_dndx= (i+(psz_>>1))*dsize.second+j+(psz_>>1);
double alpha = 0.0;
#ifdef CENTERINMASK
if(dmaskptr[patchcenter_dndx]>0.0){
#else
if(patch_type[dndx]){//If a patch is a target patch
#endif
alpha = distptr[patchcenter_dndx];
//pixel by pixel
for(int i2=0;i2<psz_*2;i2++){
for(int j2=0;j2<psz_*2;j2++){
int undx2 = (2*i+i2)*usize.second + (2*j+j2);
int undx3 = (2*nnfptr[2*dndx]+i2) * usize.second + 2 * nnfptr[2*dndx+1]+j2;
weightptr[undx2] += alpha * similarityptr[dndx];
colorfsumptr[3*undx2] += alpha * similarityptr[dndx] * colorfptr[3*undx3 ];
colorfsumptr[3*undx2+1] += alpha * similarityptr[dndx] * colorfptr[3*undx3+1];
colorfsumptr[3*undx2+2] += alpha * similarityptr[dndx] * colorfptr[3*undx3+2];
}
}
}
}
}
//normalize
for(int i=0;i<usize.first;i++){
for(int j=0;j<usize.second;j++){
int undx = i*usize.second +j;
if(umaskptr[undx]>0.0){
colorfptr [3*undx] = colorfsumptr[3*undx] / weightptr[undx];
colorfptr [3*undx+1] = colorfsumptr[3*undx+1] / weightptr[undx];
colorfptr [3*undx+2] = colorfsumptr[3*undx+2] / weightptr[undx];
}
}
}
}
void LaplacianInpainting::doEMIterLap(cv::Mat nnf, cv::Mat nnferr, bool *patch_type, cv::Mat colormat, cv::Mat colorfmat, cv::Mat maskmat, std::pair<int, int> size, int num_emiter, cv::Size orig_size, char *processfilename){
double errmin, errmax;
char *outputfilename;
outputfilename = (char*) malloc(sizeof(char) * 300);
cv::Mat a, tmpimg,tmpimg2,tmpimg1;
for(int emiter = 0; emiter< num_emiter; emiter++){
//compute the nearest neighbor fields
printf("computing %dth NNF", emiter);
findNearestNeighborLap(nnf, nnferr, patch_type, colormat, colorfmat, maskmat.clone(), size, emiter);
//show err results
//cv::minMaxLoc(nnferr, &errmin, &errmax);
//printf("max error: %lf\n", errmax);
//cv::imshow("nnf error", nnferr/errmax);
//cv::waitKey();
//update a color image
printf("-> voting");
colorVoteLap(nnf, nnferr, patch_type, colormat, colorfmat, maskmat.clone(), size);
printf("-> finish\n");
}
// free(patch_type);
free(outputfilename);
}