-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathagent.py
executable file
·426 lines (373 loc) · 18 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
import random
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from models import DoubleSoftQ, EncoderLayer, Actor
from util import ReplayBuffer
from converter import graphGoalConverter
from grid2op.Agent import BaseAgent
class Agent(BaseAgent):
def __init__(self, env, **kwargs):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.obs_space = env.observation_space
self.action_space = env.action_space
super(Agent, self).__init__(env.action_space)
mask = kwargs.get('mask', 2)
mask_hi = kwargs.get('mask_hi', 19)
self.rule = kwargs.get('rule', 'c')
self.danger = kwargs.get('danger', 0.9)
self.bus_thres = kwargs.get('threshold', 0.1)
self.max_low_len = kwargs.get('max_low_len', 19)
self.converter = graphGoalConverter(env, mask, mask_hi, self.danger, self.device, self.rule)
self.thermal_limit = env._thermal_limit_a
self.convert_obs = self.converter.convert_obs
self.action_dim = self.converter.n
self.order_dim = len(self.converter.masked_sorted_sub)
self.node_num = env.dim_topo
self.delay_step = 2
self.update_step = 0
self.k_step = 1
self.nheads = kwargs.get('head_number', 8)
self.target_update = kwargs.get('target_update', 1)
self.hard_target = kwargs.get('hard_target', False)
self.use_order = (self.rule == 'o')
self.gamma = kwargs.get('gamma', 0.99)
self.tau = kwargs.get('tau', 1e-3)
self.dropout = kwargs.get('dropout', 0.)
self.memlen = kwargs.get('memlen', int(1e5))
self.batch_size = kwargs.get('batch_size', 128)
self.update_start = self.batch_size * 8
self.actor_lr = kwargs.get('actor_lr', 5e-5)
self.critic_lr = kwargs.get('critic_lr', 5e-5)
self.embed_lr = kwargs.get('embed_lr', 5e-5)
self.alpha_lr = kwargs.get('alpha_lr', 5e-5)
self.state_dim = kwargs.get('state_dim', 128)
self.n_history = kwargs.get('n_history', 6)
self.input_dim = self.converter.n_feature * self.n_history
print(f'N: {self.node_num}, O: {self.input_dim}, S: {self.state_dim}, A: {self.action_dim}, ({self.order_dim})')
print(kwargs)
self.emb = EncoderLayer(self.input_dim, self.state_dim, self.nheads, self.node_num, self.dropout).to(self.device)
self.temb = EncoderLayer(self.input_dim, self.state_dim, self.nheads, self.node_num, self.dropout).to(self.device)
self.Q = DoubleSoftQ(self.state_dim, self.nheads, self.node_num, self.action_dim,
self.use_order, self.order_dim, self.dropout).to(self.device)
self.tQ = DoubleSoftQ(self.state_dim, self.nheads, self.node_num, self.action_dim,
self.use_order, self.order_dim, self.dropout).to(self.device)
self.actor = Actor(self.state_dim, self.nheads, self.node_num, self.action_dim,
self.use_order, self.order_dim, self.dropout).to(self.device)
# copy parameters
self.tQ.load_state_dict(self.Q.state_dict())
self.temb.load_state_dict(self.emb.state_dict())
# entropy
self.target_entropy = -self.action_dim * 3 if not self.use_order else -3 * (self.action_dim + self.order_dim)
self.log_alpha = torch.FloatTensor([-3]).to(self.device)
self.log_alpha.requires_grad = True
# optimizers
self.Q.optimizer = optim.Adam(self.Q.parameters(), lr=self.critic_lr)
self.actor.optimizer = optim.Adam(self.actor.parameters(), lr=self.actor_lr)
self.emb.optimizer = optim.Adam(self.emb.parameters(), lr=self.embed_lr)
self.alpha_optim = optim.Adam([self.log_alpha], lr=self.alpha_lr)
self.memory = ReplayBuffer(max_size=self.memlen)
self.Q.eval()
self.tQ.eval()
self.emb.eval()
self.temb.eval()
self.actor.eval()
def is_safe(self, obs):
for ratio, limit in zip(obs.rho, self.thermal_limit):
# Seperate big line and small line
if (limit < 400.00 and ratio >= self.danger-0.05) or ratio >= self.danger:
return False
return True
def load_mean_std(self, mean, std):
self.state_mean = mean
self.state_std = std.masked_fill(std < 1e-5, 1.)
self.state_mean[0,sum(self.obs_space.shape[:20]):] = 0
self.state_std[0,sum(self.action_space.shape[:20]):] = 1
def state_normalize(self, s):
s = (s - self.state_mean) / self.state_std
return s
def reset(self, obs):
self.converter.last_topo = np.ones(self.node_num, dtype=int)
self.topo = None
self.goal = None
self.goal_list = []
self.low_len = -1
self.adj = None
self.stacked_obs = []
self.low_actions = []
self.save = False
def cache_stat(self):
cache = {
'last_topo': self.converter.last_topo,
'topo': self.topo,
'goal': self.goal,
'goal_list': self.goal_list,
'low_len': self.low_len,
'adj': self.adj,
'stacked_obs': self.stacked_obs,
'low_actions': self.low_actions,
'save': self.save,
}
return cache
def load_cache_stat(self, cache):
self.converter.last_topo = cache['last_topo']
self.topo = cache['topo']
self.goal = cache['goal']
self.goal_list = cache['goal_list']
self.low_len = cache['low_len']
self.adj = cache['adj']
self.stacked_obs = cache['stacked_obs']
self.low_actions = cache['low_actions']
self.save = cache['save']
def hash_goal(self, goal):
hashed = ''
for i in goal.view(-1):
hashed += str(int(i.item()))
return hashed
def stack_obs(self, obs):
obs_vect = obs.to_vect()
obs_vect = torch.FloatTensor(obs_vect).unsqueeze(0)
obs_vect, self.topo = self.convert_obs(self.state_normalize(obs_vect))
if len(self.stacked_obs) == 0:
for _ in range(self.n_history):
self.stacked_obs.append(obs_vect)
else:
self.stacked_obs.pop(0)
self.stacked_obs.append(obs_vect)
self.adj = (torch.FloatTensor(obs.connectivity_matrix()) + torch.eye(int(obs.dim_topo))).to(self.device)
self.converter.last_topo = np.where(obs.topo_vect==-1, self.converter.last_topo, obs.topo_vect)
def reconnect_line(self, obs):
# if the agent can reconnect powerline not included in controllable substation, return action
# otherwise, return None
dislines = np.where(obs.line_status == False)[0]
for i in dislines:
act = None
if obs.time_next_maintenance[i] != 0 and i in self.converter.lonely_lines:
sub_or = self.action_space.line_or_to_subid[i]
sub_ex = self.action_space.line_ex_to_subid[i]
if obs.time_before_cooldown_sub[sub_or] == 0:
act = self.action_space({'set_bus': {'lines_or_id': [(i, 1)]}})
if obs.time_before_cooldown_sub[sub_ex] == 0:
act = self.action_space({'set_bus': {'lines_ex_id': [(i, 1)]}})
if obs.time_before_cooldown_line[i] == 0:
status = self.action_space.get_change_line_status_vect()
status[i] = True
act = self.action_space({'change_line_status': status})
if act is not None:
return act
return None
def get_current_state(self):
return torch.cat(self.stacked_obs + [self.topo], dim=-1)
def act(self, obs, reward, done):
sample = (reward is None)
self.stack_obs(obs)
is_safe = self.is_safe(obs)
self.save = False
# reconnect powerline when the powerline in uncontrollable substations is disconnected
if False in obs.line_status:
act = self.reconnect_line(obs)
if act is not None:
return act
# generate goal if it is initial or previous goal has been reached
if self.goal is None or (not is_safe and self.low_len == -1):
goal, bus_goal, low_actions, order, Q1, Q2 = self.generate_goal(sample, obs, not sample)
if len(low_actions) == 0:
act = self.action_space()
if self.goal is None:
self.update_goal(goal, bus_goal, low_actions, order, Q1, Q2)
return self.action_space()
self.update_goal(goal, bus_goal, low_actions, order, Q1, Q2)
act = self.pick_low_action(obs)
return act
def pick_low_action(self, obs):
# Safe and there is no queued low actions, just do nothing
if self.is_safe(obs) and self.low_len == -1:
act = self.action_space()
return act
# optimize low actions every step
self.low_actions = self.optimize_low_actions(obs, self.low_actions)
self.low_len += 1
# queue has been empty after optimization. just do nothing
if len(self.low_actions) == 0:
act = self.action_space()
self.low_len = -1
# normally execute low action from low actions queue
else:
sub_id, new_topo = self.low_actions.pop(0)[:2]
act = self.converter.convert_act(sub_id, new_topo, obs.topo_vect)
# When it meets maximum low action execution time, log and reset
if self.max_low_len <= self.low_len:
self.low_len = -1
return act
def high_act(self, stacked_state, adj, sample=True):
order, Q1, Q2 = None, 0, 0
with torch.no_grad():
# stacked_state # B, N, F
stacked_t, stacked_x = stacked_state[..., -1:], stacked_state[..., :-1]
emb_input = stacked_x
state = self.emb(emb_input, adj).detach()
actor_input = [state, stacked_t.squeeze(-1)]
if sample:
action, std = self.actor.sample(actor_input, adj)
if self.use_order:
action, order = action
critic_input = action
Q1, Q2 = self.Q(state, critic_input, adj, order)
Q1, Q2 = Q1.detach()[0].item(), Q2.detach()[0].item()
if self.use_order:
std, order_std = std
else:
action = self.actor.mean(actor_input, adj)
if self.use_order:
action, order = action
if order is not None: order = order.detach().cpu()
return action.detach().cpu(), order, Q1, Q2
def make_candidate_goal(self, stacked_state, adj, sample, obs):
goal, order, Q1, Q2 = self.high_act(stacked_state, adj, sample)
bus_goal = torch.zeros_like(goal).long()
bus_goal[goal > self.bus_thres] = 1
low_actions = self.converter.plan_act(bus_goal, obs.topo_vect, order[0] if order is not None else None)
low_actions = self.optimize_low_actions(obs, low_actions)
return goal, bus_goal, low_actions, order, Q1, Q2
def generate_goal(self, sample, obs, nosave=False):
stacked_state = self.get_current_state().to(self.device)
adj = self.adj.unsqueeze(0)
goal, bus_goal, low_actions, order, Q1, Q2 = self.make_candidate_goal(stacked_state, adj, sample, obs)
return goal, bus_goal, low_actions, order, Q1, Q2
def update_goal(self, goal, bus_goal, low_actions, order=None, Q1=0, Q2=0):
self.order = order
self.goal = goal
self.bus_goal = bus_goal
self.low_actions = low_actions
self.low_len = 0
self.save = True
self.goal_list.append(self.hash_goal(bus_goal))
def optimize_low_actions(self, obs, low_actions):
# remove overlapped action
optimized = []
cooldown_list = obs.time_before_cooldown_sub
if self.max_low_len != 1 and self.rule == 'c':
low_actions = self.converter.heuristic_order(obs, low_actions)
for low_act in low_actions:
sub_id, sub_goal = low_act[:2]
sub_goal, same = self.converter.inspect_act(sub_id, sub_goal, obs.topo_vect)
if not same:
optimized.append((sub_id, sub_goal, cooldown_list[sub_id]))
# sort by cooldown_sub
if self.max_low_len != 1 and self.rule != 'o':
optimized = sorted(optimized, key=lambda x: x[2])
# if current action has cooldown, then discard
if len(optimized) > 0 and optimized[0][2] > 0:
optimized = []
return optimized
def append_sample(self, s, m, a, r, s2, m2, d, order):
if self.use_order:
self.memory.append((s, m, a, r, s2, m2, int(d), order))
else:
self.memory.append((s, m, a, r, s2, m2, int(d)))
def unpack_batch(self, batch):
if self.use_order:
states, adj, actions, rewards, states2, adj2, dones, orders = list(zip(*batch))
orders = torch.cat(orders, 0)
else:
states, adj, actions, rewards, states2, adj2, dones = list(zip(*batch))
states = torch.cat(states, 0)
states2 = torch.cat(states2, 0)
adj = torch.stack(adj, 0)
adj2 = torch.stack(adj2, 0)
actions = torch.cat(actions, 0)
rewards = torch.FloatTensor(rewards).unsqueeze(1)
dones = torch.FloatTensor(dones).unsqueeze(1)
if self.use_order:
return states.to(self.device), adj.to(self.device), actions.to(self.device), rewards.to(self.device), \
states2.to(self.device), adj2.to(self.device), dones.to(self.device), orders.to(self.device)
else:
return states.to(self.device), adj.to(self.device), actions.to(self.device), \
rewards.to(self.device), states2.to(self.device), adj2.to(self.device), dones.to(self.device)
def update(self):
self.update_step += 1
batch = self.memory.sample(self.batch_size)
orders = None
if self.use_order:
stacked_states, adj, actions, rewards, stacked_states2, adj2, dones, orders = self.unpack_batch(batch)
else:
stacked_states, adj, actions, rewards, stacked_states2, adj2, dones = self.unpack_batch(batch)
self.Q.train()
self.emb.train()
self.actor.eval()
# critic loss
stacked_t, stacked_x = stacked_states[..., -1:], stacked_states[..., :-1]
stacked2_t, stacked2_x = stacked_states2[..., -1:], stacked_states2[..., :-1]
emb_input = stacked_x
emb_input2 = stacked2_x
states = self.emb(emb_input, adj)
states2 = self.emb(emb_input2, adj2)
actor_input2 = [states2, stacked2_t.squeeze(-1)]
with torch.no_grad():
tstates2 = self.temb(emb_input2, adj2).detach()
action2, log_pi2 = self.actor.rsample(actor_input2, adj2)
order2 = None
if self.use_order:
action2, order2 = action2
log_pi2 = log_pi2[0] + log_pi2[1]
critic_input2 = action2
targets = self.tQ.min_Q(tstates2, critic_input2, adj2, order2) - self.log_alpha.exp() * log_pi2
targets = rewards + (1-dones) * self.gamma * targets.detach()
critic_input = actions
predQ1, predQ2 = self.Q(states, critic_input, adj, orders)
Q1_loss = F.mse_loss(predQ1, targets)
Q2_loss = F.mse_loss(predQ2, targets)
loss = Q1_loss + Q2_loss
self.Q.optimizer.zero_grad()
self.emb.optimizer.zero_grad()
loss.backward()
self.emb.optimizer.step()
self.Q.optimizer.step()
self.Q.eval()
if self.update_step % self.delay_step == 0:
# actor loss
self.actor.train()
states = self.emb(emb_input, adj)
actor_input = [states, stacked_t.squeeze(-1)]
action, log_pi = self.actor.rsample(actor_input, adj)
order = None
if self.use_order:
action, order = action
log_pi = log_pi[0] + log_pi[1]
critic_input = action
actor_loss = (self.log_alpha.exp() * log_pi - self.Q.min_Q(states, critic_input, adj, order)).mean()
self.emb.optimizer.zero_grad()
self.actor.optimizer.zero_grad()
actor_loss.backward()
self.emb.optimizer.step()
self.actor.optimizer.step()
self.actor.eval()
# target update
if self.hard_target:
self.tQ.load_state_dict(self.Q.state_dict())
self.temb.load_state_dict(self.emb.state_dict())
else:
for tp, p in zip(self.tQ.parameters(), self.Q.parameters()):
tp.data.copy_(self.tau * p + (1-self.tau) * tp)
for tp, p in zip(self.temb.parameters(), self.emb.parameters()):
tp.data.copy_(self.tau * p + (1-self.tau) * tp)
# alpha loss
alpha_loss = self.log_alpha * (-log_pi.detach() - self.target_entropy).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward()
self.alpha_optim.step()
self.emb.eval()
return predQ1.detach().mean().item(), predQ2.detach().mean().item()
def save_model(self, path, name):
torch.save(self.actor.state_dict(), os.path.join(path, f'{name}_actor.pt'))
torch.save(self.emb.state_dict(), os.path.join(path, f'{name}_emb.pt'))
torch.save(self.Q.state_dict(), os.path.join(path, f'{name}_Q.pt'))
def load_model(self, path, name=None):
head = ''
if name is not None:
head = name + '_'
self.actor.load_state_dict(torch.load(os.path.join(path, f'{head}actor.pt'), map_location=self.device))
self.emb.load_state_dict(torch.load(os.path.join(path, f'{head}emb.pt'), map_location=self.device))
self.Q.load_state_dict(torch.load(os.path.join(path, f'{head}Q.pt'), map_location=self.device))