-
Notifications
You must be signed in to change notification settings - Fork 10
/
calculate_ssim.py
116 lines (90 loc) · 3.37 KB
/
calculate_ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
import torch
from tqdm import tqdm
import cv2
def ssim(img1, img2):
C1 = 0.01 ** 2
C2 = 0.03 ** 2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim_function(img1, img2):
# [0,1]
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[0] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[i], img2[i]))
return np.array(ssims).mean()
elif img1.shape[0] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def trans(x):
return x
def calculate_ssim(videos1, videos2, only_final=False):
print("calculate_ssim...")
# videos [batch_size, timestamps, channel, h, w]
assert videos1.shape == videos2.shape
videos1 = trans(videos1)
videos2 = trans(videos2)
ssim_results = []
for video_num in tqdm(range(videos1.shape[0])):
# get a video
# video [timestamps, channel, h, w]
video1 = videos1[video_num]
video2 = videos2[video_num]
ssim_results_of_a_video = []
for clip_timestamp in range(len(video1)):
# get a img
# img [timestamps[x], channel, h, w]
# img [channel, h, w] numpy
img1 = video1[clip_timestamp].numpy()
img2 = video2[clip_timestamp].numpy()
# calculate ssim of a video
ssim_results_of_a_video.append(calculate_ssim_function(img1, img2))
ssim_results.append(ssim_results_of_a_video)
ssim_results = np.array(ssim_results)
ssim = []
ssim_std = []
if only_final:
ssim.append(np.mean(ssim_results))
ssim_std.append(np.std(ssim_results))
else:
for clip_timestamp in range(len(video1)):
ssim.append(np.mean(ssim_results[:,clip_timestamp]))
ssim_std.append(np.std(ssim_results[:,clip_timestamp]))
result = {
"value": ssim,
"value_std": ssim_std,
}
return result
# test code / using example
def main():
NUMBER_OF_VIDEOS = 8
VIDEO_LENGTH = 30
CHANNEL = 3
SIZE = 64
videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
videos2 = torch.ones(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
result = calculate_ssim(videos1, videos2)
print("[ssim avg]", result["value"])
print("[ssim std]", result["value_std"])
if __name__ == "__main__":
main()