-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
executable file
·123 lines (92 loc) · 4.12 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import tensorflow as tf
import numpy as np
import model
import get_data
import config
import sys
import evals
sys.path.append("./")
FLAGS = tf.app.flags.FLAGS
THRESHOLDS = [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.8,0.85,0.9,0.95]
METRICS = ['ACC', 'HA', 'ebF1', 'miF1', 'maF1', 'meanAUC', 'medianAUC', 'meanAUPR', 'medianAUPR', 'meanFDR', 'medianFDR', 'p_at_1', 'p_at_3', 'p_at_5']
def main(_):
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
print('reading npy...')
data = np.load(FLAGS.data_dir)
test_idx = np.load(FLAGS.test_idx)
print('reading completed')
session_config = tf.compat.v1.ConfigProto()
session_config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=session_config)
print('building network...')
classifier = model.MODEL(is_training=False)
global_step = tf.Variable(0,name='global_step',trainable=False)
merged_summary = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.summary_dir, sess.graph)
saver = tf.train.Saver(max_to_keep=None)
saver.restore(sess, FLAGS.checkpoint_path)
model_id = FLAGS.checkpoint_path.split("-")[-1]
print('restoring from '+FLAGS.checkpoint_path)
def test_step(test_idx, name="Test"):
print('{}...'.format(name))
all_nll_loss = 0
all_l2_loss = 0
all_c_loss = 0
all_total_loss = 0
all_indiv_prob = []
all_label = []
all_indiv_max = []
sigma=[]
real_batch_size=min(FLAGS.testing_size, len(test_idx))
N_test_batch = int( (len(test_idx)-1)/real_batch_size ) + 1
for i in range(N_test_batch):
if i % 20 == 0:
print("%.1f%% completed" % (i*100.0/N_test_batch))
start = real_batch_size*i
end = min(real_batch_size*(i+1), len(test_idx))
input_feat = get_data.get_feat(data,test_idx[start:end])
input_label = get_data.get_label(data,test_idx[start:end])
feed_dict={}
feed_dict[classifier.input_feat]=input_feat
feed_dict[classifier.input_label]=input_label
feed_dict[classifier.keep_prob]=1.0
nll_loss, l2_loss, c_loss, total_loss, indiv_prob, covariance = sess.run([classifier.nll_loss, classifier.l2_loss, classifier.c_loss, \
classifier.total_loss, classifier.indiv_prob, classifier.covariance], feed_dict)
all_nll_loss += nll_loss*(end-start)
all_l2_loss += l2_loss*(end-start)
all_c_loss += c_loss*(end-start)
all_total_loss += total_loss*(end-start)
if (all_indiv_prob == []):
all_indiv_prob = indiv_prob
else:
all_indiv_prob = np.concatenate((all_indiv_prob, indiv_prob))
if (all_label == []):
all_label = input_label
else:
all_label = np.concatenate((all_label, input_label))
nll_loss = all_nll_loss / len(test_idx)
l2_loss = all_l2_loss / len(test_idx)
c_loss = all_c_loss / len(test_idx)
total_loss = all_total_loss / len(test_idx)
return all_indiv_prob, all_label
indiv_prob, input_label = test_step(test_idx, "Test")
n_label = indiv_prob.shape[1]
best_test_metrics = None
for threshold in THRESHOLDS:
test_metrics = evals.compute_metrics(indiv_prob, input_label, threshold, all_metrics=True)
if best_test_metrics == None:
best_test_metrics = {}
for metric in METRICS:
best_test_metrics[metric] = test_metrics[metric]
else:
for metric in METRICS:
if 'FDR' in metric:
best_test_metrics[metric] = min(best_test_metrics[metric], test_metrics[metric])
else:
best_test_metrics[metric] = max(best_test_metrics[metric], test_metrics[metric])
print("****************")
for metric in METRICS:
print(metric, ":", best_test_metrics[metric])
print("****************")
if __name__=='__main__':
tf.app.run()