-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_sprite_cls.py
216 lines (177 loc) · 9.84 KB
/
test_sprite_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import argparse
import os
import json
from model import CDSVAE, classifier_Sprite_all
import utils
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--lr', default=1.e-3, type=float, help='learning rate')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--nEpoch', default=300, type=int, help='number of epochs to train for')
parser.add_argument('--seed', default=1, type=int, help='manual seed')
parser.add_argument('--evl_interval', default=10, type=int, help='evaluate every n epoch')
parser.add_argument('--log_dir', default='./logs', type=str, help='base directory to save logs')
parser.add_argument('--dataset', default='Sprite', type=str, help='dataset to train')
parser.add_argument('--frames', default=8, type=int, help='number of frames, 8 for sprite, 15 for digits and MUGs')
parser.add_argument('--channels', default=3, type=int, help='number of channels in images')
parser.add_argument('--image_width', default=64, type=int, help='the height / width of the input image to network')
parser.add_argument('--f_rnn_layers', default=1, type=int, help='number of layers (content lstm)')
parser.add_argument('--rnn_size', default=256,type=int, help='dimensionality of hidden layer')
parser.add_argument('--f_dim', default=256, type=int,help='dim of f')
parser.add_argument('--z_dim', default=32,type=int, help='dimensionality of z_t')
parser.add_argument('--g_dim', default=128,type=int, help='dimensionality of encoder output vector and decoder input vector')
parser.add_argument('--loss_recon', default='L2', type=str, help='reconstruction loss: L1, L2')
parser.add_argument('--note', default='', type=str, help='appx note')
parser.add_argument('--weight_f', default=1, type=float,help='weighting on KL to prior, content vector')
parser.add_argument('--weight_z', default=1, type=float,help='weighting on KL to prior, motion vector')
parser.add_argument('--weight_c_aug', default=1, type=float,help='weighting on content contrastive loss')
parser.add_argument('--weight_m_aug', default=1, type=float,help='weighting on motion contrastive loss')
parser.add_argument('--gpu', default='0', type=str,help='index of GPU to use')
parser.add_argument('--sche', default='cosine', type=str, help='scheduler')
parser.add_argument('--model_epoch', type=int, default=200, help='ckpt epoch')
parser.add_argument('--model_dir', default='', help='ckpt directory')
parser.add_argument('--type_gt', type=str, default='action', help='action, skin, top, pant, hair')
parser.add_argument('--niter', type=int, default=300, help='number of runs for testing')
opt = parser.parse_args()
def reorder(sequence):
return sequence.permute(0,1,4,2,3)
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
def main(opt):
if opt.model_dir != '':
saved_model = torch.load('%s/model%d.pth' % (opt.model_dir, opt.model_epoch))
model_dir = opt.model_dir
opt.model_dir = model_dir
else:
raise ValueError('missing checkpoint')
log = os.path.join(opt.log_dir, 'log.txt')
os.makedirs('%s/gen/' % opt.log_dir, exist_ok=True)
os.makedirs('%s/plots/' % opt.log_dir, exist_ok=True)
dtype = torch.cuda.FloatTensor
print_log('Running parameters:')
print_log(json.dumps(vars(opt), indent=4, separators=(',', ':')), log)
if opt.model_dir != '':
cdsvae = CDSVAE(opt)
if 'model' in saved_model:
cdsvae.load_state_dict(saved_model['model'], strict=False)
else:
cdsvae.load_state_dict(saved_model['ds_vae'].state_dict(), strict=False)
# --------- transfer to gpu ------------------------------------
if torch.cuda.device_count() > 1:
print_log("Let's use {} GPUs!".format(torch.cuda.device_count()), log)
cdsvae = nn.DataParallel(cdsvae)
cdsvae = cdsvae.cuda()
print_log(cdsvae, log)
# --------- load a dataset ------------------------------------
train_data, test_data = utils.load_dataset(opt)
test_loader = DataLoader(test_data,
num_workers=4,
batch_size=opt.batch_size,
shuffle=False,
drop_last=True,
pin_memory=True)
opt.g_dim = 128
opt.rnn_size = 256
classifier = classifier_Sprite_all(opt)
opt.resume = './judges/Sprite/sprite_judge.tar'
loaded_dict = torch.load(opt.resume)
classifier.load_state_dict(loaded_dict['state_dict'])
classifier = classifier.cuda().eval()
# --------- training loop ------------------------------------
for epoch in range(opt.niter):
print("Epoch", epoch)
cdsvae.eval()
mean_acc0, mean_acc1, mean_acc2, mean_acc3, mean_acc4 = 0, 0, 0, 0, 0
mean_acc0_sample, mean_acc1_sample, mean_acc2_sample, mean_acc3_sample, mean_acc4_sample = 0, 0, 0, 0, 0
pred1_all, pred2_all, label2_all = list(), list(), list()
label_gt = list()
for i, data in enumerate(test_loader):
x, label_A, label_D, c_aug, m_aug = reorder(data['images']), data['A_label'], data['D_label'], reorder(data['c_aug']), reorder(data['m_aug'])
x, label_A, label_D, c_aug, m_aug = x.cuda(), label_A.cuda(), label_D.cuda(), c_aug.cuda(), m_aug.cuda()
if opt.type_gt == "action":
recon_x_sample, recon_x = cdsvae.forward_fixed_motion_for_classification(x)
else:
recon_x_sample, recon_x = cdsvae.forward_fixed_content_for_classification(x)
with torch.no_grad():
pred_action1, pred_skin1, pred_pant1, pred_top1, pred_hair1 = classifier(x)
pred_action2, pred_skin2, pred_pant2, pred_top2, pred_hair2 = classifier(recon_x_sample)
pred_action3, pred_skin3, pred_pant3, pred_top3, pred_hair3 = classifier(recon_x)
pred1 = F.softmax(pred_action1, dim = 1)
pred2 = F.softmax(pred_action2, dim = 1)
pred3 = F.softmax(pred_action3, dim = 1)
label1 = np.argmax(pred1.detach().cpu().numpy(), axis=1)
label2 = np.argmax(pred2.detach().cpu().numpy(), axis=1)
label3 = np.argmax(pred3.detach().cpu().numpy(), axis=1)
label2_all.append(label2)
pred1_all.append(pred1.detach().cpu().numpy())
pred2_all.append(pred2.detach().cpu().numpy())
label_gt.append(label_D.detach().cpu().numpy())
def count_D(pred, label, mode=1):
return (pred//mode) == (label//mode)
acc0_sample = count_D(np.argmax(pred_action2.detach().cpu().numpy(), axis=1), label_D.cpu().numpy()).mean()
acc1_sample = (np.argmax(pred_skin2.detach().cpu().numpy(), axis=1) == label_A[:, 0].cpu().numpy()).mean()
acc2_sample = (np.argmax(pred_pant2.detach().cpu().numpy(), axis=1) == label_A[:, 1].cpu().numpy()).mean()
acc3_sample = (np.argmax(pred_top2.detach().cpu().numpy(), axis=1) == label_A[:, 2].cpu().numpy()).mean()
acc4_sample = (np.argmax(pred_hair2.detach().cpu().numpy(), axis=1) == label_A[:, 3].cpu().numpy()).mean()
mean_acc0_sample += acc0_sample
mean_acc1_sample += acc1_sample
mean_acc2_sample += acc2_sample
mean_acc3_sample += acc3_sample
mean_acc4_sample += acc4_sample
print('Test sample: action_Acc: {:.2f}% skin_Acc: {:.2f}% pant_Acc: {:.2f}% top_Acc: {:.2f}% hair_Acc: {:.2f}% '.format(
mean_acc0_sample / len(test_loader)*100,
mean_acc1_sample / len(test_loader)*100, mean_acc2_sample / len(test_loader)*100,
mean_acc3_sample / len(test_loader)*100, mean_acc4_sample / len(test_loader)*100))
label2_all = np.hstack(label2_all)
label_gt = np.hstack(label_gt)
pred1_all = np.vstack(pred1_all)
pred2_all = np.vstack(pred2_all)
acc = (label_gt == label2_all).mean()
kl = KL_divergence(pred2_all, pred1_all)
nSample_per_cls = min([(label_gt==i).sum() for i in np.unique(label_gt)])
index = np.hstack([np.nonzero(label_gt == i)[0][:nSample_per_cls] for i in np.unique(label_gt)]).squeeze()
pred2_selected = pred2_all[index]
IS = inception_score(pred2_selected)
H_yx = entropy_Hyx(pred2_selected)
H_y = entropy_Hy(pred2_selected)
print('acc: {:.2f}%, kl: {:.4f}, IS: {:.4f}, H_yx: {:.4f}, H_y: {:.4f}'.format(acc*100, kl, IS, H_yx, H_y))
def entropy_Hy(p_yx, eps=1E-16):
p_y = p_yx.mean(axis=0)
sum_h = (p_y * np.log(p_y + eps)).sum() * (-1)
return sum_h
def entropy_Hyx(p, eps=1E-16):
sum_h = (p * np.log(p + eps)).sum(axis = 1)
# average over images
avg_h = np.mean(sum_h) * (-1)
return avg_h
def inception_score(p_yx, eps=1E-16):
# calculate p(y)
p_y = np.expand_dims(p_yx.mean(axis=0), 0)
# kl divergence for each image
kl_d = p_yx * (np.log(p_yx + eps) - np.log(p_y + eps))
# sum over classes
sum_kl_d = kl_d.sum(axis=1)
# average over images
avg_kl_d = np.mean(sum_kl_d)
# undo the logs
is_score = np.exp(avg_kl_d)
return is_score
def KL_divergence(P, Q, eps=1E-16):
kl_d = P * (np.log(P + eps) - np.log(Q + eps))
# sum over classes
sum_kl_d = kl_d.sum(axis=1)
# average over images
avg_kl_d = np.mean(sum_kl_d)
return avg_kl_d
def print_log(print_string, log=None):
print("{}".format(print_string))
if log is not None:
log = open(log, 'a')
log.write('{}\n'.format(print_string))
log.close()
if __name__ == '__main__':
main(opt)