-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
90 lines (70 loc) · 3.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import importlib
from utils import *
MODEL_DIR=None
DATA_DIR = 'data/'
PROJECT='base'
def get_command_line_parser():
parser = argparse.ArgumentParser()
# about dataset and network
parser.add_argument('-project', type=str, default=PROJECT)
parser.add_argument('-dataset', type=str, default='cub200',
choices=['mini_imagenet', 'cub200', 'cifar100'])
parser.add_argument('-dataroot', type=str, default=DATA_DIR)
parser.add_argument('--save', type=str, default=None)
# about pre-training
parser.add_argument('-epochs_base', type=int, default=100)
parser.add_argument('-epochs_new', type=int, default=100)
parser.add_argument('-lr_base', type=float, default=0.1)
parser.add_argument('-schedule', type=str, default='Step',
choices=['Step', 'Milestone'])
parser.add_argument('-milestones', nargs='+', type=int, default=[60, 70])
parser.add_argument('-step', type=int, default=40)
parser.add_argument('-decay', type=float, default=0.0005)
parser.add_argument('-momentum', type=float, default=0.9)
parser.add_argument('-gamma', type=float, default=0.1)
parser.add_argument('-temperature', type=float, default=16)
parser.add_argument('-not_data_init', action='store_true', help='using average data embedding to init or not')
parser.add_argument('-batch_size_base', type=int, default=128)
parser.add_argument('-batch_size_new', type=int, default=0, help='set 0 will use all the availiable training image for new')
parser.add_argument('-test_batch_size', type=int, default=100)
parser.add_argument('-base_mode', type=str, default='ft_cos',
choices=['ft_dot', 'ft_soft', 'ft_cos']) # ft_dot means using linear classifier, ft_cos means using cosine classifier
parser.add_argument('-new_mode', type=str, default='avg_cos',
choices=['ft_dot', 'ft_cos', 'avg_cos']) # ft_dot means using linear classifier, ft_cos means using cosine classifier, avg_cos means using average data embedding and cosine classifier
# for episode learning
parser.add_argument('-train_episode', type=int, default=50)
parser.add_argument('-episode_shot', type=int, default=1)
parser.add_argument('-episode_way', type=int, default=15)
parser.add_argument('-episode_query', type=int, default=15)
# for cec
parser.add_argument('-lrg', type=float, default=0.1) #lr for graph attention network
parser.add_argument('-low_shot', type=int, default=1)
parser.add_argument('-low_way', type=int, default=15)
parser.add_argument('-start_session', type=int, default=0)
parser.add_argument('-model_dir', type=str, default=MODEL_DIR, help='loading model parameter from a specific dir')
parser.add_argument('-set_no_val', action='store_true', help='set validation using test set or no validation')
# about training
parser.add_argument('-gpu', default='0,1,2,3')
parser.add_argument('-num_workers', type=int, default=12)
parser.add_argument('-seed', type=int, default=0)
parser.add_argument('-debug', action='store_true')
parser.add_argument('--eval_only', action='store_true', default=False)
parser.add_argument('--num_aug', type=int, default=2)
parser.add_argument('--supcon_temp', type=float, default=32)
parser.add_argument('--temp', type=float, default=32)
parser.add_argument('--inter_lamb', type=float, default=1)
parser.add_argument('--ssc_lamb', type=float, default=0.1)
parser.add_argument('--closer', action='store_true', default=False)
parser.add_argument('--pretrained_dir', type=str)
return parser
if __name__ == '__main__':
parser = get_command_line_parser()
args = parser.parse_args()
set_seed(args.seed)
#pprint(vars(args))
args.num_gpu = set_gpu(args)
if args.eval_only:
args.epochs_base = 0
trainer = importlib.import_module('models.%s.fscil_trainer' % (args.project)).FSCILTrainer(args)
trainer.train()