-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathtrain_LA_HD.py
249 lines (211 loc) · 10.1 KB
/
train_LA_HD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import sys
from tqdm import tqdm
from tensorboardX import SummaryWriter
import shutil
import argparse
import logging
import time
import random
import numpy as np
import torch
import torch.optim as optim
from torchvision import transforms
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from networks.vnet import VNet
from dataloaders.la_heart import LAHeart, RandomCrop, CenterCrop, RandomRotFlip, ToTensor, TwoStreamBatchSampler
from scipy.ndimage import distance_transform_edt as distance
# Heart MR segmentation with hausdorff distance loss
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str, default='../data/2018LA_Seg_Training Set/', help='Name of Experiment')
parser.add_argument('--exp', type=str, default='vnet_dp_hd_dt', help='model_name')
parser.add_argument('--max_iterations', type=int, default=20000, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=4, help='batch_size per gpu')
parser.add_argument('--base_lr', type=float, default=0.001, help='maximum epoch number to train')
parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
parser.add_argument('--seed', type=int, default=2019, help='random seed')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use')
args = parser.parse_args()
train_data_path = args.root_path
snapshot_path = "../model_la/" + args.exp + "/"
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
batch_size = args.batch_size * len(args.gpu.split(','))
max_iterations = args.max_iterations
base_lr = args.base_lr
if args.deterministic:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def dice_loss(score, target):
target = target.float()
smooth = 1e-5
intersect = torch.sum(score * target)
y_sum = torch.sum(target * target)
z_sum = torch.sum(score * score)
loss = (2 * intersect + smooth) / (z_sum + y_sum + smooth)
loss = 1 - loss
return loss
def compute_dtm01(img_gt, out_shape):
"""
compute the normalized distance transform map of foreground in binary mask
input: segmentation, shape = (batch_size, x, y, z)
output: the foreground Distance Map (SDM) shape=out_shape
sdf(x) = 0; x in segmentation boundary
inf|x-y|; x in segmentation
0; x out of segmentation
normalize sdf to [0, 1]
"""
normalized_dtm = np.zeros(out_shape)
for b in range(out_shape[0]): # batch size
# ignore background
for c in range(1, out_shape[1]):
posmask = img_gt[b].astype(np.bool)
if posmask.any():
posdis = distance(posmask)
normalized_dtm[b][c] = posdis/np.max(posdis)
return normalized_dtm
def compute_dtm(img_gt, out_shape):
"""
compute the distance transform map of foreground in binary mask
input: segmentation, shape = (batch_size, x, y, z)
output: the foreground Distance Map (SDM)
dtm(x) = 0; x in segmentation boundary
inf|x-y|; x in segmentation
"""
fg_dtm = np.zeros(out_shape)
for b in range(out_shape[0]): # batch size
for c in range(1, out_shape[1]):
posmask = img_gt[b].astype(np.bool)
if posmask.any():
posdis = distance(posmask)
fg_dtm[b][c] = posdis
return fg_dtm
def hd_loss(seg_soft, gt, seg_dtm, gt_dtm):
"""
compute huasdorff distance loss for binary segmentation
input: seg_soft: softmax results, shape=(b,2,x,y,z)
gt: ground truth, shape=(b,x,y,z)
seg_dtm: segmentation distance transform map; shape=(b,2,x,y,z)
gt_dtm: ground truth distance transform map; shape=(b,2,x,y,z)
output: boundary_loss; sclar
"""
delta_s = (seg_soft[:,1,...] - gt.float()) ** 2
s_dtm = seg_dtm[:,1,...] ** 2
g_dtm = gt_dtm[:,1,...] ** 2
dtm = s_dtm + g_dtm
multipled = torch.einsum('bxyz, bxyz->bxyz', delta_s, dtm)
hd_loss = multipled.mean()
return hd_loss
patch_size = (112, 112, 80)
num_classes = 2
if __name__ == "__main__":
## make logger file
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
if os.path.exists(snapshot_path + '/code'):
shutil.rmtree(snapshot_path + '/code')
shutil.copytree('.', snapshot_path + '/code', shutil.ignore_patterns(['.git','__pycache__']))
logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
net = VNet(n_channels=1, n_classes=num_classes, normalization='batchnorm', has_dropout=True)
net = net.cuda()
db_train = LAHeart(base_dir=train_data_path,
split='train',
num=16,
transform = transforms.Compose([
RandomRotFlip(),
RandomCrop(patch_size),
ToTensor(),
]))
def worker_init_fn(worker_id):
random.seed(args.seed+worker_id)
trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)
net.train()
optimizer = optim.SGD(net.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
writer = SummaryWriter(snapshot_path+'/log', flush_secs=2)
logging.info("{} itertations per epoch".format(len(trainloader)))
iter_num = 0
alpha = 1.0
max_epoch = max_iterations//len(trainloader)+1
lr_ = base_lr
net.train()
for epoch_num in tqdm(range(max_epoch), ncols=70):
time1 = time.time()
for i_batch, sampled_batch in enumerate(trainloader):
time2 = time.time()
# print('fetch data cost {}'.format(time2-time1))
# volume_batch.shape=(b,1,x,y,z) label_patch.shape=(b,x,y,z)
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
outputs = net(volume_batch)
loss_seg = F.cross_entropy(outputs, label_batch)
outputs_soft = F.softmax(outputs, dim=1)
loss_seg_dice = dice_loss(outputs_soft[:, 1, :, :, :], label_batch == 1)
# compute distance maps and hd loss
with torch.no_grad():
# defalut using compute_dtm; however, compute_dtm01 is also worth to try;
gt_dtm_npy = compute_dtm(label_batch.cpu().numpy(), outputs_soft.shape)
gt_dtm = torch.from_numpy(gt_dtm_npy).float().cuda(outputs_soft.device.index)
seg_dtm_npy = compute_dtm(outputs_soft[:, 1, :, :, :].cpu().numpy()>0.5, outputs_soft.shape)
seg_dtm = torch.from_numpy(seg_dtm_npy).float().cuda(outputs_soft.device.index)
loss_hd = hd_loss(outputs_soft, label_batch, seg_dtm, gt_dtm)
loss = alpha*(loss_seg+loss_seg_dice) + (1 - alpha) * loss_hd
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter_num = iter_num + 1
writer.add_scalar('lr', lr_, iter_num)
writer.add_scalar('loss/loss_ce', loss_seg, iter_num)
writer.add_scalar('loss/loss_dice', loss_seg_dice, iter_num)
writer.add_scalar('loss/loss_hd', loss_hd, iter_num)
writer.add_scalar('loss/loss', loss, iter_num)
writer.add_scalar('loss/alpha', alpha, iter_num)
logging.info('iteration %d : alpha : %f' % (iter_num, alpha))
logging.info('iteration %d : loss_dice : %f' % (iter_num, loss_seg_dice.item()))
logging.info('iteration %d : loss_hd : %f' % (iter_num, loss_hd.item()))
logging.info('iteration %d : loss : %f' % (iter_num, loss.item()))
if iter_num % 2 == 0:
image = volume_batch[0, 0:1, :, :, 20:61:10].permute(3,0,1,2).repeat(1,3,1,1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/Image', grid_image, iter_num)
image = outputs_soft[0, 1:2, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=False)
writer.add_image('train/Predicted_label', grid_image, iter_num)
image = label_batch[0, :, :, 20:61:10].unsqueeze(0).permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=False)
writer.add_image('train/Groundtruth_label', grid_image, iter_num)
image = gt_dtm[0, 1:2, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/gt_sdf', grid_image, iter_num)
image = seg_dtm[0, 1:2, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/seg_sdf', grid_image, iter_num)
## change lr
if iter_num % 2500 == 0:
lr_ = base_lr * 0.1 ** (iter_num // 2500)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
if iter_num % 1000 == 0:
save_mode_path = os.path.join(snapshot_path, 'iter_' + str(iter_num) + '.pth')
torch.save(net.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
if iter_num > max_iterations:
break
time1 = time.time()
alpha -= 0.001
if alpha <= 0.001:
alpha = 0.001
if iter_num > max_iterations:
break
save_mode_path = os.path.join(snapshot_path, 'iter_'+str(max_iterations+1)+'.pth')
torch.save(net.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
writer.close()