diff --git a/Project.toml b/Project.toml index f7c6bbf3..8373c87f 100644 --- a/Project.toml +++ b/Project.toml @@ -9,9 +9,16 @@ version = "1.9.0" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" +[weakdeps] +SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + +[extensions] +SparseArraysExt = ["SparseArrays"] + [extras] Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["Random", "Test"] +test = ["Random", "SparseArrays", "Test"] diff --git a/ext/SparseArraysExt.jl b/ext/SparseArraysExt.jl new file mode 100644 index 00000000..df7b0b86 --- /dev/null +++ b/ext/SparseArraysExt.jl @@ -0,0 +1,101 @@ +module SparseArraysExt + +##### SparseArrays optimizations ##### + +using Base: require_one_based_indexing +using LinearAlgebra +using SparseArrays +using Statistics +using Statistics: centralize_sumabs2, unscaled_covzm + +# extended functions +import Statistics: cov, centralize_sumabs2! + +function cov(X::SparseMatrixCSC; dims::Int=1, corrected::Bool=true) + vardim = dims + a, b = size(X) + n, p = vardim == 1 ? (a, b) : (b, a) + + # The covariance can be decomposed into two terms + # 1/(n - 1) ∑ (x_i - x̄)*(x_i - x̄)' = 1/(n - 1) (∑ x_i*x_i' - n*x̄*x̄') + # which can be evaluated via a sparse matrix-matrix product + + # Compute ∑ x_i*x_i' = X'X using sparse matrix-matrix product + out = Matrix(unscaled_covzm(X, vardim)) + + # Compute x̄ + x̄ᵀ = mean(X, dims=vardim) + + # Subtract n*x̄*x̄' from X'X + @inbounds for j in 1:p, i in 1:p + out[i,j] -= x̄ᵀ[i] * x̄ᵀ[j]' * n + end + + # scale with the sample size n or the corrected sample size n - 1 + return rmul!(out, inv(n - corrected)) +end + +# This is the function that does the reduction underlying var/std +function centralize_sumabs2!(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray) where {S,Tv,Ti} + require_one_based_indexing(R, A, means) + lsiz = Base.check_reducedims(R,A) + for i in 1:max(ndims(R), ndims(means)) + if axes(means, i) != axes(R, i) + throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))")) + end + end + isempty(R) || fill!(R, zero(S)) + isempty(A) && return R + + rowval = rowvals(A) + nzval = nonzeros(A) + m = size(A, 1) + n = size(A, 2) + + if size(R, 1) == size(R, 2) == 1 + # Reduction along both columns and rows + R[1, 1] = centralize_sumabs2(A, means[1]) + elseif size(R, 1) == 1 + # Reduction along rows + @inbounds for col = 1:n + mu = means[col] + r = convert(S, (m - length(nzrange(A, col)))*abs2(mu)) + @simd for j = nzrange(A, col) + r += abs2(nzval[j] - mu) + end + R[1, col] = r + end + elseif size(R, 2) == 1 + # Reduction along columns + rownz = fill(convert(Ti, n), m) + @inbounds for col = 1:n + @simd for j = nzrange(A, col) + row = rowval[j] + R[row, 1] += abs2(nzval[j] - means[row]) + rownz[row] -= 1 + end + end + for i = 1:m + R[i, 1] += rownz[i]*abs2(means[i]) + end + else + # Reduction along a dimension > 2 + @inbounds for col = 1:n + lastrow = 0 + @simd for j = nzrange(A, col) + row = rowval[j] + for i = lastrow+1:row-1 + R[i, col] = abs2(means[i, col]) + end + R[row, col] = abs2(nzval[j] - means[row, col]) + lastrow = row + end + for i = lastrow+1:m + R[i, col] = abs2(means[i, col]) + end + end + end + return R +end + +end # module diff --git a/src/Statistics.jl b/src/Statistics.jl index 040ac972..7edc800d 100644 --- a/src/Statistics.jl +++ b/src/Statistics.jl @@ -7,7 +7,7 @@ Standard library module for basic statistics functionality. """ module Statistics -using LinearAlgebra, SparseArrays +using LinearAlgebra using Base: has_offset_axes, require_one_based_indexing @@ -1073,94 +1073,9 @@ quantile(itr, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = quantile(v::AbstractVector, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = quantile!(sorted ? v : Base.copymutable(v), p; sorted=sorted, alpha=alpha, beta=beta) - -##### SparseArrays optimizations ##### - -function cov(X::SparseMatrixCSC; dims::Int=1, corrected::Bool=true) - vardim = dims - a, b = size(X) - n, p = vardim == 1 ? (a, b) : (b, a) - - # The covariance can be decomposed into two terms - # 1/(n - 1) ∑ (x_i - x̄)*(x_i - x̄)' = 1/(n - 1) (∑ x_i*x_i' - n*x̄*x̄') - # which can be evaluated via a sparse matrix-matrix product - - # Compute ∑ x_i*x_i' = X'X using sparse matrix-matrix product - out = Matrix(unscaled_covzm(X, vardim)) - - # Compute x̄ - x̄ᵀ = mean(X, dims=vardim) - - # Subtract n*x̄*x̄' from X'X - @inbounds for j in 1:p, i in 1:p - out[i,j] -= x̄ᵀ[i] * x̄ᵀ[j]' * n - end - - # scale with the sample size n or the corrected sample size n - 1 - return rmul!(out, inv(n - corrected)) -end - -# This is the function that does the reduction underlying var/std -function centralize_sumabs2!(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray) where {S,Tv,Ti} - require_one_based_indexing(R, A, means) - lsiz = Base.check_reducedims(R,A) - for i in 1:max(ndims(R), ndims(means)) - if axes(means, i) != axes(R, i) - throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))")) - end - end - isempty(R) || fill!(R, zero(S)) - isempty(A) && return R - - rowval = rowvals(A) - nzval = nonzeros(A) - m = size(A, 1) - n = size(A, 2) - - if size(R, 1) == size(R, 2) == 1 - # Reduction along both columns and rows - R[1, 1] = centralize_sumabs2(A, means[1]) - elseif size(R, 1) == 1 - # Reduction along rows - @inbounds for col = 1:n - mu = means[col] - r = convert(S, (m - length(nzrange(A, col)))*abs2(mu)) - @simd for j = nzrange(A, col) - r += abs2(nzval[j] - mu) - end - R[1, col] = r - end - elseif size(R, 2) == 1 - # Reduction along columns - rownz = fill(convert(Ti, n), m) - @inbounds for col = 1:n - @simd for j = nzrange(A, col) - row = rowval[j] - R[row, 1] += abs2(nzval[j] - means[row]) - rownz[row] -= 1 - end - end - for i = 1:m - R[i, 1] += rownz[i]*abs2(means[i]) - end - else - # Reduction along a dimension > 2 - @inbounds for col = 1:n - lastrow = 0 - @simd for j = nzrange(A, col) - row = rowval[j] - for i = lastrow+1:row-1 - R[i, col] = abs2(means[i, col]) - end - R[row, col] = abs2(nzval[j] - means[row, col]) - lastrow = row - end - for i = lastrow+1:m - R[i, col] = abs2(means[i, col]) - end - end - end - return R +## If package extensions are not supported in this Julia version +if !isdefined(Base, :get_extension) + include("../ext/SparseArraysExt.jl") end end # module