diff --git a/Project.toml b/Project.toml index 7add3ef68..1c4944d76 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "Distributions" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" authors = ["JuliaStats"] -version = "0.24.11" +version = "0.24.12" [deps] FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b" diff --git a/src/matrixvariates.jl b/src/matrixvariates.jl index 5454dc431..c7ac4ed4d 100644 --- a/src/matrixvariates.jl +++ b/src/matrixvariates.jl @@ -130,10 +130,14 @@ end # multiple matrix-variates, must allocate array of arrays rand(rng::AbstractRNG, s::Sampleable{Matrixvariate}, dims::Dims) = rand!(rng, s, Array{Matrix{eltype(s)}}(undef, dims), true) +rand(rng::AbstractRNG, s::Sampleable{Matrixvariate,Continuous}, dims::Dims) = + rand!(rng, s, Array{Matrix{float(eltype(s))}}(undef, dims), true) # single matrix-variate, must allocate one matrix rand(rng::AbstractRNG, s::Sampleable{Matrixvariate}) = _rand!(rng, s, Matrix{eltype(s)}(undef, size(s))) +rand(rng::AbstractRNG, s::Sampleable{Matrixvariate,Continuous}) = + _rand!(rng, s, Matrix{float(eltype(s))}(undef, size(s))) # single matrix-variate with pre-allocated matrix function rand!(rng::AbstractRNG, s::Sampleable{Matrixvariate}, diff --git a/src/multivariate/mvnormal.jl b/src/multivariate/mvnormal.jl index 9117ea900..a3fa74c14 100644 --- a/src/multivariate/mvnormal.jl +++ b/src/multivariate/mvnormal.jl @@ -278,7 +278,7 @@ _rand!(rng::AbstractRNG, d::MvNormal, x::VecOrMat) = # Workaround: randn! only works for Array, but not generally for AbstractArray function _rand!(rng::AbstractRNG, d::MvNormal, x::AbstractVector) for i in eachindex(x) - @inbounds x[i] = randn(rng,eltype(d)) + @inbounds x[i] = randn(rng, eltype(x)) end add!(unwhiten!(d.Σ, x), d.μ) end diff --git a/src/multivariates.jl b/src/multivariates.jl index 8e83ed711..0d2f214c9 100644 --- a/src/multivariates.jl +++ b/src/multivariates.jl @@ -69,12 +69,18 @@ end rand(s::Sampleable{Multivariate}, n::Int) = rand(GLOBAL_RNG, s, n) rand(rng::AbstractRNG, s::Sampleable{Multivariate}, n::Int) = _rand!(rng, s, Matrix{eltype(s)}(undef, length(s), n)) +rand(rng::AbstractRNG, s::Sampleable{Multivariate,Continuous}, n::Int) = + _rand!(rng, s, Matrix{float(eltype(s))}(undef, length(s), n)) rand(rng::AbstractRNG, s::Sampleable{Multivariate}, dims::Dims) = - rand(rng, s, Array{Vector{eltype(s)}}(undef, dims), true) + rand!(rng, s, Array{Vector{eltype(s)}}(undef, dims), true) +rand(rng::AbstractRNG, s::Sampleable{Multivariate,Continuous}, dims::Dims) = + rand!(rng, s, Array{Vector{float(eltype(s))}}(undef, dims), true) # single multivariate, must allocate vector rand(rng::AbstractRNG, s::Sampleable{Multivariate}) = _rand!(rng, s, Vector{eltype(s)}(undef, length(s))) +rand(rng::AbstractRNG, s::Sampleable{Multivariate,Continuous}) = + _rand!(rng, s, Vector{float(eltype(s))}(undef, length(s))) ## domain diff --git a/src/univariate/continuous/normal.jl b/src/univariate/continuous/normal.jl index aa55f15f6..0cc8a3391 100644 --- a/src/univariate/continuous/normal.jl +++ b/src/univariate/continuous/normal.jl @@ -240,7 +240,7 @@ cf(d::Normal, t::Real) = exp(im * t * d.μ - d.σ^2 / 2 * t^2) #### Sampling -rand(rng::AbstractRNG, d::Normal{T}) where {T} = d.μ + d.σ * randn(rng, T) +rand(rng::AbstractRNG, d::Normal{T}) where {T} = d.μ + d.σ * randn(rng, float(T)) #### Fitting diff --git a/src/univariates.jl b/src/univariates.jl index 433d8956a..47809fef6 100644 --- a/src/univariates.jl +++ b/src/univariates.jl @@ -157,6 +157,8 @@ end # multiple univariate, must allocate array rand(rng::AbstractRNG, s::Sampleable{Univariate}, dims::Dims) = rand!(rng, sampler(s), Array{eltype(s)}(undef, dims)) +rand(rng::AbstractRNG, s::Sampleable{Univariate,Continuous}, dims::Dims) = + rand!(rng, sampler(s), Array{float(eltype(s))}(undef, dims)) # multiple univariate with pre-allocated array function rand!(rng::AbstractRNG, s::Sampleable{Univariate}, A::AbstractArray) diff --git a/test/dirichlet.jl b/test/dirichlet.jl index dc80c7a60..530dd4ab6 100644 --- a/test/dirichlet.jl +++ b/test/dirichlet.jl @@ -12,100 +12,104 @@ rng = MersenneTwister(123) Dict("rand(...)" => [rand, rand], "rand(rng, ...)" => [dist -> rand(rng, dist), (dist, n) -> rand(rng, dist, n)]) -d = Dirichlet(3, 2.0) - -@test length(d) == 3 -@test d.alpha == [2.0, 2.0, 2.0] -@test d.alpha0 == 6.0 - -@test mean(d) ≈ fill(1.0/3, 3) -@test cov(d) ≈ [8 -4 -4; -4 8 -4; -4 -4 8] / (36 * 7) -@test var(d) ≈ diag(cov(d)) - -@test pdf(Dirichlet([1, 1]), [0, 1]) ≈ 1.0 -@test pdf(Dirichlet([1f0, 1f0]), [0f0, 1f0]) ≈ 1.0f0 -@test typeof(pdf(Dirichlet([1f0, 1f0]), [0f0, 1f0])) == Float32 - -@test pdf(d, [-1, 1, 0]) ≈ 0.0 -@test pdf(d, [0, 0, 1]) ≈ 0.0 -@test pdf(d, [0.2, 0.3, 0.5]) ≈ 3.6 -@test pdf(d, [0.4, 0.5, 0.1]) ≈ 2.4 -@test logpdf(d, [0.2, 0.3, 0.5]) ≈ log(3.6) -@test logpdf(d, [0.4, 0.5, 0.1]) ≈ log(2.4) - -x = func[2](d, 100) -p = pdf(d, x) -lp = logpdf(d, x) -for i in 1 : size(x, 2) - @test lp[i] ≈ logpdf(d, x[:,i]) - @test p[i] ≈ pdf(d, x[:,i]) -end - -v = [2.0, 1.0, 3.0] -d = Dirichlet(v) - -@test Dirichlet([2, 1, 3]).alpha == d.alpha - -@test length(d) == length(v) -@test d.alpha == v -@test d.alpha0 == sum(v) -@test d == Dirichlet{eltype(d)}(params(d)...) -@test d == deepcopy(d) - -@test mean(d) ≈ v / sum(v) -@test cov(d) ≈ [8 -2 -6; -2 5 -3; -6 -3 9] / (36 * 7) -@test var(d) ≈ diag(cov(d)) - -@test pdf(d, [0.2, 0.3, 0.5]) ≈ 3.0 -@test pdf(d, [0.4, 0.5, 0.1]) ≈ 0.24 -@test logpdf(d, [0.2, 0.3, 0.5]) ≈ log(3.0) -@test logpdf(d, [0.4, 0.5, 0.1]) ≈ log(0.24) - -x = func[2](d, 100) -p = pdf(d, x) -lp = logpdf(d, x) -for i in 1 : size(x, 2) - @test p[i] ≈ pdf(d, x[:,i]) - @test lp[i] ≈ logpdf(d, x[:,i]) -end - -# Sampling - -x = func[1](d) -@test isa(x, Vector{Float64}) -@test length(x) == 3 - -x = func[2](d, 10) -@test isa(x, Matrix{Float64}) -@test size(x) == (3, 10) - -v = [2.0, 1.0, 3.0] -d = Dirichlet(Float32.(v)) - -x = func[1](d) -@test isa(x, Vector{Float32}) -@test length(x) == 3 - -x = func[2](d, 10) -@test isa(x, Matrix{Float32}) -@test size(x) == (3, 10) - - -# Test MLE - -v = [2.0, 1.0, 3.0] -d = Dirichlet(v) - -n = 10000 -x = func[2](d, n) -x = x ./ sum(x, dims=1) - -r = fit_mle(Dirichlet, x) -@test isapprox(r.alpha, d.alpha, atol=0.25) -r = fit(Dirichlet{Float32}, x) -@test isapprox(r.alpha, d.alpha, atol=0.25) - -# r = fit_mle(Dirichlet, x, fill(2.0, n)) -# @test isapprox(r.alpha, d.alpha, atol=0.25) - + for T in (Int, Float64) + d = Dirichlet(3, T(2)) + + @test length(d) == 3 + @test eltype(d) === T + @test d.alpha == [2, 2, 2] + @test d.alpha0 == 6 + + @test mean(d) ≈ fill(1/3, 3) + @test cov(d) ≈ [8 -4 -4; -4 8 -4; -4 -4 8] / (36 * 7) + @test var(d) ≈ diag(cov(d)) + + @test pdf(Dirichlet([1, 1]), [0, 1]) ≈ 1 + @test pdf(Dirichlet([1f0, 1f0]), [0f0, 1f0]) ≈ 1 + @test typeof(pdf(Dirichlet([1f0, 1f0]), [0f0, 1f0])) === Float32 + + @test iszero(pdf(d, [-1, 1, 0])) + @test iszero(pdf(d, [0, 0, 1])) + @test pdf(d, [0.2, 0.3, 0.5]) ≈ 3.6 + @test pdf(d, [0.4, 0.5, 0.1]) ≈ 2.4 + @test logpdf(d, [0.2, 0.3, 0.5]) ≈ log(3.6) + @test logpdf(d, [0.4, 0.5, 0.1]) ≈ log(2.4) + + x = func[2](d, 100) + p = pdf(d, x) + lp = logpdf(d, x) + for i in 1 : size(x, 2) + @test lp[i] ≈ logpdf(d, x[:,i]) + @test p[i] ≈ pdf(d, x[:,i]) + end + + v = [2, 1, 3] + d = Dirichlet(T.(v)) + + @test eltype(d) === T + @test Dirichlet([2, 1, 3]).alpha == d.alpha + + @test length(d) == length(v) + @test d.alpha == v + @test d.alpha0 == sum(v) + @test d == Dirichlet{T}(params(d)...) + @test d == deepcopy(d) + + @test mean(d) ≈ v / sum(v) + @test cov(d) ≈ [8 -2 -6; -2 5 -3; -6 -3 9] / (36 * 7) + @test var(d) ≈ diag(cov(d)) + + @test pdf(d, [0.2, 0.3, 0.5]) ≈ 3 + @test pdf(d, [0.4, 0.5, 0.1]) ≈ 0.24 + @test logpdf(d, [0.2, 0.3, 0.5]) ≈ log(3) + @test logpdf(d, [0.4, 0.5, 0.1]) ≈ log(0.24) + + x = func[2](d, 100) + p = pdf(d, x) + lp = logpdf(d, x) + for i in 1 : size(x, 2) + @test p[i] ≈ pdf(d, x[:,i]) + @test lp[i] ≈ logpdf(d, x[:,i]) + end + + # Sampling + + x = func[1](d) + @test isa(x, Vector{Float64}) + @test length(x) == 3 + + x = func[2](d, 10) + @test isa(x, Matrix{Float64}) + @test size(x) == (3, 10) + + v = [2, 1, 3] + d = Dirichlet(Float32.(v)) + @test eltype(d) === Float32 + + x = func[1](d) + @test isa(x, Vector{Float32}) + @test length(x) == 3 + + x = func[2](d, 10) + @test isa(x, Matrix{Float32}) + @test size(x) == (3, 10) + + + # Test MLE + + v = [2, 1, 3] + d = Dirichlet(v) + + n = 10000 + x = func[2](d, n) + x = x ./ sum(x, dims=1) + + r = fit_mle(Dirichlet, x) + @test r.alpha ≈ d.alpha atol=0.25 + r = fit(Dirichlet{Float32}, x) + @test r.alpha ≈ d.alpha atol=0.25 + + # r = fit_mle(Dirichlet, x, fill(2.0, n)) + # @test r.alpha ≈ d.alpha atol=0.25 + end end diff --git a/test/mvnormal.jl b/test/mvnormal.jl index 8b2740afa..1758ed208 100644 --- a/test/mvnormal.jl +++ b/test/mvnormal.jl @@ -347,3 +347,10 @@ end @test_throws DimensionMismatch dot(o3, d4) end end + +@testset "MvNormal: Sampling with integer-valued parameters (#1004)" begin + d = MvNormal([0, 0], [1, 1]) + @test rand(d) isa Vector{Float64} + @test rand(d, 10) isa Matrix{Float64} + @test rand(d, (3, 2)) isa Matrix{Vector{Float64}} +end diff --git a/test/normal.jl b/test/normal.jl index 08e35a60b..4101abc64 100644 --- a/test/normal.jl +++ b/test/normal.jl @@ -159,3 +159,10 @@ end @test isnan_type(Float32, @inferred(cquantile(Normal(1.0f0, 0.0f0), NaN32))) @test @inferred(cquantile(Normal(1//1, 0//1), 1//2)) === 1.0 end + +@testset "Normal: Sampling with integer-valued parameters" begin + d = Normal{Int}(0, 1) + @test rand(d) isa Float64 + @test rand(d, 10) isa Vector{Float64} + @test rand(d, (3, 2)) isa Matrix{Float64} +end