-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathuniform.jl
167 lines (130 loc) · 4.34 KB
/
uniform.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
Uniform(a,b)
The *continuous uniform distribution* over an interval ``[a, b]`` has probability density function
```math
f(x; a, b) = \\frac{1}{b - a}, \\quad a \\le x \\le b
```
```julia
Uniform() # Uniform distribution over [0, 1]
Uniform(a, b) # Uniform distribution over [a, b]
params(d) # Get the parameters, i.e. (a, b)
minimum(d) # Get the lower bound, i.e. a
maximum(d) # Get the upper bound, i.e. b
location(d) # Get the location parameter, i.e. a
scale(d) # Get the scale parameter, i.e. b - a
```
External links
* [Uniform distribution (continuous) on Wikipedia](http://en.wikipedia.org/wiki/Uniform_distribution_(continuous))
"""
struct Uniform{T<:Real} <: ContinuousUnivariateDistribution
a::T
b::T
Uniform{T}(a::Real, b::Real) where {T <: Real} = new{T}(a, b)
end
function Uniform(a::T, b::T; check_args::Bool=true) where {T <: Real}
@check_args Uniform (a < b)
return Uniform{T}(a, b)
end
Uniform(a::Real, b::Real; check_args::Bool=true) = Uniform(promote(a, b)...; check_args=check_args)
Uniform(a::Integer, b::Integer; check_args::Bool=true) = Uniform(float(a), float(b); check_args=check_args)
Uniform() = Uniform{Float64}(0.0, 1.0)
@distr_support Uniform d.a d.b
#### Conversions
convert(::Type{Uniform{T}}, a::Real, b::Real) where {T<:Real} = Uniform(T(a), T(b))
Base.convert(::Type{Uniform{T}}, d::Uniform) where {T<:Real} = Uniform{T}(T(d.a), T(d.b))
Base.convert(::Type{Uniform{T}}, d::Uniform{T}) where {T<:Real} = d
#### Parameters
params(d::Uniform) = (d.a, d.b)
partype(::Uniform{T}) where {T<:Real} = T
location(d::Uniform) = d.a
scale(d::Uniform) = d.b - d.a
#### Statistics
mean(d::Uniform) = middle(d.a, d.b)
median(d::Uniform) = mean(d)
mode(d::Uniform) = mean(d)
modes(d::Uniform) = Float64[]
var(d::Uniform) = (w = d.b - d.a; w^2 / 12)
skewness(d::Uniform{T}) where {T<:Real} = zero(T)
kurtosis(d::Uniform{T}) where {T<:Real} = -6/5*one(T)
entropy(d::Uniform) = log(d.b - d.a)
#### Evaluation
function pdf(d::Uniform, x::Real)
# include dependency on `x` for return type to be consistent with `cdf`
a, b, _ = promote(d.a, d.b, x)
val = inv(b - a)
return insupport(d, x) ? val : zero(val)
end
function logpdf(d::Uniform, x::Real)
# include dependency on `x` for return type to be consistent with `logcdf`
a, b, _ = promote(d.a, d.b, x)
val = - log(b - a)
return insupport(d, x) ? val : oftype(val, -Inf)
end
gradlogpdf(d::Uniform, x::Real) = zero(partype(d)) / oneunit(x)
function cdf(d::Uniform, x::Real)
a, b = params(d)
return clamp((x - a) / (b - a), 0, 1)
end
function ccdf(d::Uniform, x::Real)
a, b = params(d)
return clamp((b - x) / (b - a), 0, 1)
end
quantile(d::Uniform, p::Real) = d.a + p * (d.b - d.a)
cquantile(d::Uniform, p::Real) = d.b + p * (d.a - d.b)
function mgf(d::Uniform, t::Real)
(a, b) = params(d)
u = (b - a) * t / 2
u == zero(u) && return one(u)
v = (a + b) * t / 2
exp(v) * (sinh(u) / u)
end
function cgf_uniform_around_zero_kernel(x)
# taylor series of (exp(x) - x - 1) / x
T = typeof(x)
a0 = inv(T(2))
a1 = inv(T(6))
a2 = inv(T(24))
a3 = inv(T(120))
x*@evalpoly(x, a0, a1, a2, a3)
end
function cgf(d::Uniform, t)
# log((exp(t*b) - exp(t*a))/ (t*(b-a)))
a,b = params(d)
x = t*(b-a)
if abs(x) <= sqrt(eps(float(one(x))))
cgf_around_zero(d, t)
else
cgf_away_from_zero(d, t)
end
end
function cgf_around_zero(d::Uniform, t)
a,b = params(d)
x = t*(b-a)
t*a + log1p(cgf_uniform_around_zero_kernel(x))
end
function cgf_away_from_zero(d::Uniform, t)
a,b = params(d)
x = t*(b-a)
logsubexp(t*b, t*a) - log(abs(x))
end
function cf(d::Uniform, t::Real)
(a, b) = params(d)
u = (b - a) * t / 2
u == zero(u) && return complex(one(u))
v = (a + b) * t / 2
cis(v) * (sin(u) / u)
end
#### Affine transformations
Base.:+(d::Uniform, c::Real) = Uniform(d.a + c, d.b + c)
Base.:*(c::Real, d::Uniform) = Uniform(minmax(c * d.a, c * d.b)...)
#### Sampling
rand(rng::AbstractRNG, d::Uniform) = d.a + (d.b - d.a) * rand(rng)
_rand!(rng::AbstractRNG, d::Uniform, A::AbstractArray{<:Real}) =
A .= quantile.(d, rand!(rng, A))
#### Fitting
function fit_mle(::Type{T}, x::AbstractArray{<:Real}) where {T<:Uniform}
if isempty(x)
throw(ArgumentError("x cannot be empty."))
end
return T(extrema(x)...)
end