-
Notifications
You must be signed in to change notification settings - Fork 370
/
Copy pathio.jl
300 lines (274 loc) · 10 KB
/
io.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
##############################################################################
#
# Text output
#
##############################################################################
function escapedprint(io::IO, x::Any, escapes::AbstractString)
ourshowcompact(io, x)
end
function escapedprint(io::IO, x::AbstractString, escapes::AbstractString)
escape_string(io, x, escapes)
end
function printtable(io::IO,
df::AbstractDataFrame;
header::Bool = true,
separator::Char = ',',
quotemark::Char = '"',
nastring::AbstractString = "null")
n, p = size(df)
etypes = eltypes(df)
if header
cnames = _names(df)
for j in 1:p
print(io, quotemark)
print(io, cnames[j])
print(io, quotemark)
if j < p
print(io, separator)
else
print(io, '\n')
end
end
end
quotestr = string(quotemark)
for i in 1:n
for j in 1:p
if !isnull(df[j][i])
if ! (etypes[j] <: Real)
print(io, quotemark)
escapedprint(io, df[i, j], quotestr)
print(io, quotemark)
else
print(io, df[i, j])
end
else
print(io, nastring)
end
if j < p
print(io, separator)
else
print(io, '\n')
end
end
end
return
end
function printtable(df::AbstractDataFrame;
header::Bool = true,
separator::Char = ',',
quotemark::Char = '"',
nastring::AbstractString = "null")
printtable(STDOUT,
df,
header = header,
separator = separator,
quotemark = quotemark,
nastring = nastring)
return
end
##############################################################################
#
# HTML output
#
##############################################################################
function html_escape(cell::AbstractString)
cell = replace(cell, "&", "&")
cell = replace(cell, "<", "<")
cell = replace(cell, ">", ">")
return cell
end
function Base.show(io::IO, ::MIME"text/html", df::AbstractDataFrame)
cnames = _names(df)
write(io, "<table class=\"data-frame\">")
write(io, "<thead>")
write(io, "<tr>")
write(io, "<th></th>")
for column_name in cnames
write(io, "<th>$column_name</th>")
end
write(io, "</tr>")
write(io, "</thead>")
write(io, "<tbody>")
haslimit = get(io, :limit, true)
n = size(df, 1)
if haslimit
tty_rows, tty_cols = displaysize(io)
mxrow = min(n,tty_rows)
else
mxrow = n
end
for row in 1:mxrow
write(io, "<tr>")
write(io, "<th>$row</th>")
for column_name in cnames
cell = sprint(ourshowcompact, df[row, column_name])
write(io, "<td>$(html_escape(cell))</td>")
end
write(io, "</tr>")
end
if n > mxrow
write(io, "<tr>")
write(io, "<th>⋮</th>")
for column_name in cnames
write(io, "<td>⋮</td>")
end
write(io, "</tr>")
end
write(io, "</tbody>")
write(io, "</table>")
end
##############################################################################
#
# LaTeX output
#
##############################################################################
function latex_char_escape(char::AbstractString)
if char == "\\"
return "\\textbackslash{}"
elseif char == "~"
return "\\textasciitilde{}"
else
return string("\\", char)
end
end
function latex_escape(cell::AbstractString)
cell = replace(cell, ['\\','~','#','$','%','&','_','^','{','}'], latex_char_escape)
return cell
end
function Base.show(io::IO, ::MIME"text/latex", df::AbstractDataFrame)
nrows = size(df, 1)
ncols = size(df, 2)
cnames = _names(df)
alignment = repeat("c", ncols)
write(io, "\\begin{tabular}{r|")
write(io, alignment)
write(io, "}\n")
write(io, "\t& ")
header = join(map(c -> latex_escape(string(c)), cnames), " & ")
write(io, header)
write(io, "\\\\\n")
write(io, "\t\\hline\n")
for row in 1:nrows
write(io, "\t")
write(io, @sprintf("%d", row))
for col in 1:ncols
write(io, " & ")
cell = df[row,col]
if !isnull(cell)
if mimewritable(MIME("text/latex"), cell)
show(io, MIME("text/latex"), cell)
else
print(io, latex_escape(sprint(ourshowcompact, cell)))
end
end
end
write(io, " \\\\\n")
end
write(io, "\\end{tabular}\n")
end
##############################################################################
#
# MIME
#
##############################################################################
function Base.show(io::IO, ::MIME"text/csv", df::AbstractDataFrame)
printtable(io, df, true, ',')
end
function Base.show(io::IO, ::MIME"text/tab-separated-values", df::AbstractDataFrame)
printtable(io, df, true, '\t')
end
##############################################################################
#
# DataStreams-based IO
#
##############################################################################
using DataStreams, WeakRefStrings
struct DataFrameStream{T}
columns::T
header::Vector{String}
end
DataFrameStream(df::DataFrame) = DataFrameStream(Tuple(df.columns), string.(names(df)))
# DataFrame Data.Source implementation
function Data.schema(df::DataFrame)
return Data.Schema(Type[eltype(A) for A in df.columns],
string.(names(df)), length(df) == 0 ? 0 : length(df.columns[1]))
end
Data.isdone(source::DataFrame, row, col, rows, cols) = row > rows || col > cols
function Data.isdone(source::DataFrame, row, col)
cols = length(source)
return Data.isdone(source, row, col, cols == 0 ? 0 : length(df.columns[1]), cols)
end
Data.streamtype(::Type{DataFrame}, ::Type{Data.Column}) = true
Data.streamtype(::Type{DataFrame}, ::Type{Data.Field}) = true
Data.streamfrom(source::DataFrame, ::Type{Data.Column}, ::Type{T}, row, col) where {T} =
source[col]
Data.streamfrom(source::DataFrame, ::Type{Data.Field}, ::Type{T}, row, col) where {T} =
source[col][row]
# DataFrame Data.Sink implementation
Data.streamtypes(::Type{DataFrame}) = [Data.Column, Data.Field]
Data.weakrefstrings(::Type{DataFrame}) = true
allocate(::Type{T}, rows, ref) where {T} = Vector{T}(rows)
allocate(::Type{T}, rows, ref) where {T <: Union{WeakRefString, Null}} =
WeakRefStringArray(ref, T, rows)
# Construct or modify a DataFrame to be ready to stream data from a source with `sch`
function DataFrame(sch::Data.Schema{R}, ::Type{S}=Data.Field,
append::Bool=false, args...;
reference::Vector{UInt8}=UInt8[]) where {R, S <: Data.StreamType}
types = Data.types(sch)
if !isempty(args) && args[1] isa DataFrame && types == Data.types(Data.schema(args[1]))
# passing in an existing DataFrame Sink w/ same types as source
sink = args[1]
sinkrows = size(Data.schema(sink), 1)
# are we appending and either column-streaming or there are an unknown # of rows
if append && (S == Data.Column || !R)
sch.rows = sinkrows
# dont' need to do anything because:
# for Data.Column, we just append columns anyway (see Data.streamto! below)
# for Data.Field, unknown # of source rows, so we'll just push! in streamto!
else
# need to adjust the existing sink
# similar to above, for Data.Column or unknown # of rows for Data.Field,
# we'll append!/push! in streamto!, so we empty! the columns
# if appending, we want to grow our columns to be able to include every row
# in source (sinkrows + sch.rows)
# if not appending, we're just "re-using" a sink, so we just resize it
# to the # of rows in the source
newsize = ifelse(S == Data.Column || !R, 0,
ifelse(append, sinkrows + sch.rows, sch.rows))
foreach(col->resize!(col, newsize), sink.columns)
sch.rows = newsize
end
# take care of a possible reference from source by addint to WeakRefStringArrays
if !isempty(reference)
foreach(col-> col isa WeakRefStringArray && push!(col.data, reference),
sink.columns)
end
sink = DataFrameStream(sink)
else
# allocating a fresh DataFrame Sink; append is irrelevant
# for Data.Column or unknown # of rows in Data.Field, we only ever append!,
# so just allocate empty columns
rows = ifelse(S == Data.Column, 0, ifelse(!R, 0, sch.rows))
names = Data.header(sch)
sink = DataFrameStream(
Tuple(allocate(types[i], rows, reference) for i = 1:length(types)), names)
sch.rows = rows
end
return sink
end
DataFrame(sink, sch::Data.Schema, ::Type{S}, append::Bool;
reference::Vector{UInt8}=UInt8[]) where {S} =
DataFrame(sch, S, append, sink; reference=reference)
@inline Data.streamto!(sink::DataFrameStream, ::Type{Data.Field}, val,
row, col::Int) =
(A = sink.columns[col]; row > length(A) ? push!(A, val) : setindex!(A, val, row))
@inline Data.streamto!(sink::DataFrameStream, ::Type{Data.Field}, val,
row, col::Int, ::Type{Val{false}}) =
push!(sink.columns[col], val)
@inline Data.streamto!(sink::DataFrameStream, ::Type{Data.Field}, val,
row, col::Int, ::Type{Val{true}}) =
sink.columns[col][row] = val
@inline Data.streamto!(sink::DataFrameStream, ::Type{Data.Column}, column,
row, col::Int, knownrows) =
append!(sink.columns[col], column)
Data.close!(df::DataFrameStream) = DataFrame(collect(Any, df.columns), Symbol.(df.header))