-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathseeding.jl
263 lines (211 loc) · 8.46 KB
/
seeding.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Initialization algorithms
#
# Each algorithm is represented by a subtype of SeedingAlgorithm
#
# Let alg be an instance of such an algorithm, then it should
# support the following usage:
#
# initseeds!(iseeds, alg, X; kwargs...)
# initseeds_by_costs!(iseeds, alg, costs; kwargs...)
#
# Here:
# - iseeds: a vector of resultant indexes of the chosen seeds
# - alg: the seeding algorithm instance
# - X: the data matrix, each column being a data point
# - costs: pre-computed pairwise cost matrix.
# - kwargs: additional kw-arguments, i.e. `rng`
#
# This function returns iseeds
#
"""
SeedingAlgorithm
Base type for all seeding algorithms.
Each seeding algorithm should implement the two functions: [`initseeds!`](@ref)
and [`initseeds_by_costs!`](@ref).
"""
abstract type SeedingAlgorithm end
"""
initseeds(alg::Union{SeedingAlgorithm, Symbol},
X::AbstractMatrix, k::Integer) -> Vector{Int}
Select `k` seeds from a ``d×n`` data matrix `X` using the `alg`
algorithm.
`alg` could be either an instance of [`SeedingAlgorithm`](@ref) or a symbolic
name of the algorithm.
Returns the vector of `k` seed indices.
"""
initseeds(alg::SeedingAlgorithm, X::AbstractMatrix{<:Real}, k::Integer; kwargs...) =
initseeds!(Vector{Int}(undef, k), alg, X; kwargs...)
"""
initseeds_by_costs(alg::Union{SeedingAlgorithm, Symbol},
costs::AbstractMatrix, k::Integer) -> Vector{Int}
Select `k` seeds from the ``n×n`` `costs` matrix using algorithm `alg`.
Here, `costs[i, j]` is the cost of assigning points `i`` and ``j``
to the same cluster. One may, for example, use the squared Euclidean distance
between the points as the cost.
Returns the vector of `k` seed indices.
"""
initseeds_by_costs(alg::SeedingAlgorithm, costs::AbstractMatrix{<:Real}, k::Integer; kwargs...) =
initseeds_by_costs!(Vector{Int}(undef, k), alg, costs; kwargs...)
seeding_algorithm(s::Symbol) =
s == :rand ? RandSeedAlg() :
s == :kmpp ? KmppAlg() :
s == :kmcen ? KmCentralityAlg() :
throw(ArgumentError("Unknown seeding algorithm $s"))
function check_seeding_args(n::Integer, k::Integer)
k >= 1 || throw(ArgumentError("The number of seeds ($k) must be positive."))
k <= n || throw(ArgumentError("Cannot select more seeds ($k) than data points ($n)."))
end
check_seeding_args(X::AbstractMatrix, iseeds::AbstractVector) =
check_seeding_args(size(X, 2), length(iseeds))
initseeds(algname::Symbol, X::AbstractMatrix{<:Real}, k::Integer; kwargs...) =
initseeds(seeding_algorithm(algname), X, k; kwargs...)::Vector{Int}
initseeds_by_costs(algname::Symbol, costs::AbstractMatrix{<:Real}, k::Integer; kwargs...) =
initseeds_by_costs(seeding_algorithm(algname), costs, k; kwargs...)
# use specified vector of seeds
function initseeds(iseeds::AbstractVector{<:Integer}, X::AbstractMatrix{<:Real}, k::Integer; kwargs...)
length(iseeds) == k ||
throw(ArgumentError("The length of seeds vector ($(length(iseeds))) differs from the number of seeds requested ($k)"))
check_seeding_args(X, iseeds)
n = size(X, 2)
# check that seed indices are fine
for (i, seed) in enumerate(iseeds)
(1 <= seed <= n) || throw(ArgumentError("Seed #$i refers to an incorrect data point ($seed)"))
end
# NOTE no duplicate checks are done, should we?
convert(Vector{Int}, iseeds)
end
initseeds_by_costs(iseeds::AbstractVector{<:Integer}, costs::AbstractMatrix{<:Real}, k::Integer; kwargs...) =
initseeds(iseeds, costs, k; kwargs...) # NOTE: passing costs as X, but should be fine since only size(X, 2) is used
function copyseeds!(S::AbstractMatrix{<:AbstractFloat},
X::AbstractMatrix{<:Real},
iseeds::AbstractVector)
d, n = size(X)
k = length(iseeds)
size(S) == (d, k) ||
throw(DimensionMismatch("Inconsistent seeds matrix dimensions: $((d, k)) expected, $(size(S)) given."))
return copyto!(S, view(X, :, iseeds))
end
"""
RandSeedAlg <: SeedingAlgorithm
Random seeding (`:rand`).
Chooses an arbitrary subset of ``k`` data points as cluster seeds.
"""
struct RandSeedAlg <: SeedingAlgorithm end
"""
initseeds!(iseeds::AbstractVector{Int}, alg::SeedingAlgorithm,
X::AbstractMatrix) -> iseeds
Initialize `iseeds` with the indices of cluster seeds for the `X` data matrix
using the `alg` seeding algorithm.
"""
function initseeds!(iseeds::AbstractVector{<:Integer}, alg::RandSeedAlg, X::AbstractMatrix{<:Real};
rng::AbstractRNG=Random.GLOBAL_RNG)
check_seeding_args(X, iseeds)
sample!(rng, 1:size(X, 2), iseeds; replace=false)
end
"""
initseeds_by_costs!(iseeds::AbstractVector{Int}, alg::SeedingAlgorithm,
costs::AbstractMatrix) -> iseeds
Initialize `iseeds` with the indices of cluster seeds for the `costs` matrix
using the `alg` seeding algorithm.
Here, `costs[i, j]` is the cost of assigning points ``i`` and ``j``
to the same cluster. One may, for example, use the squared Euclidean distance
between the points as the cost.
"""
function initseeds_by_costs!(iseeds::AbstractVector{<:Integer}, alg::RandSeedAlg, X::AbstractMatrix{<:Real}; rng::AbstractRNG=Random.GLOBAL_RNG)
check_seeding_args(X, iseeds)
sample!(rng, 1:size(X,2), iseeds; replace=false)
end
"""
KmppAlg <: SeedingAlgorithm
Kmeans++ seeding (`:kmpp`).
Chooses the seeds sequentially. The probability of a point to be chosen is
proportional to the minimum cost of assigning it to the existing seeds.
# References
> D. Arthur and S. Vassilvitskii (2007).
> *k-means++: the advantages of careful seeding.*
> 18th Annual ACM-SIAM symposium on Discrete algorithms, 2007.
"""
struct KmppAlg <: SeedingAlgorithm end
function initseeds!(iseeds::AbstractVector{<:Integer}, alg::KmppAlg,
X::AbstractMatrix{<:Real},
metric::PreMetric = SqEuclidean();
rng::AbstractRNG=Random.GLOBAL_RNG)
n = size(X, 2)
k = length(iseeds)
check_seeding_args(n, k)
# randomly pick the first center
p = rand(rng, 1:n)
iseeds[1] = p
if k > 1
mincosts = colwise(metric, X, view(X, :, p))
mincosts[p] = 0
# pick remaining (with a chance proportional to mincosts)
tmpcosts = zeros(n)
for j = 2:k
p = wsample(rng, 1:n, mincosts)
iseeds[j] = p
# update mincosts
c = view(X, :, p)
colwise!(metric, tmpcosts, X, view(X, :, p))
updatemin!(mincosts, tmpcosts)
mincosts[p] = 0
end
end
return iseeds
end
function initseeds_by_costs!(iseeds::AbstractVector{<:Integer}, alg::KmppAlg,
costs::AbstractMatrix{<:Real};
rng::AbstractRNG=Random.GLOBAL_RNG)
n = size(costs, 1)
k = length(iseeds)
check_seeding_args(n, k)
# randomly pick the first center
p = rand(rng, 1:n)
iseeds[1] = p
if k > 1
mincosts = costs[:, p]
mincosts[p] = 0
# pick remaining (with a chance proportional to mincosts)
for j = 2:k
p = wsample(rng, 1:n, mincosts)
iseeds[j] = p
# update mincosts
updatemin!(mincosts, view(costs, :, p))
mincosts[p] = 0
end
end
return iseeds
end
"""
KmCentralityAlg <: SeedingAlgorithm
K-medoids initialization based on centrality (`:kmcen`).
Choose the ``k`` points with the highest *centrality* as seeds.
# References
> Hae-Sang Park and Chi-Hyuck Jun.
> *A simple and fast algorithm for K-medoids clustering.*
> doi:10.1016/j.eswa.2008.01.039
"""
struct KmCentralityAlg <: SeedingAlgorithm end
function initseeds_by_costs!(iseeds::AbstractVector{<:Integer}, alg::KmCentralityAlg,
costs::AbstractMatrix{<:Real}; kwargs...)
n = size(costs, 1)
k = length(iseeds)
check_seeding_args(n, k)
# compute score for each item
coefs = vec(sum(costs, dims=2))
for i = 1:n
@inbounds coefs[i] = inv(coefs[i])
end
# scores[j] = \sum_j costs[i,j] / (\sum_{j'} costs[i,j'])
# = costs[i,j] * coefs[i]
scores = costs'coefs
# lower score indicates better seeds
sp = sortperm(scores)
for i = 1:k
@inbounds iseeds[i] = sp[i]
end
return iseeds
end
initseeds!(iseeds::AbstractVector{<:Integer}, alg::KmCentralityAlg, X::AbstractMatrix{<:Real},
metric::PreMetric = SqEuclidean(); kwargs...) =
initseeds_by_costs!(iseeds, alg, pairwise(metric, X, dims=2); kwargs...)