-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathspatialmotion.jl
401 lines (329 loc) · 14.6 KB
/
spatialmotion.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
$(TYPEDEF)
A geometric Jacobian (also known as basic, or spatial Jacobian) maps a vector
of joint velocities to a twist.
"""
struct GeometricJacobian{A<:AbstractMatrix}
body::CartesianFrame3D
base::CartesianFrame3D
frame::CartesianFrame3D
angular::A
linear::A
@inline function GeometricJacobian{A}(
body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractMatrix, linear::AbstractMatrix) where A<:AbstractMatrix
@boundscheck size(angular, 1) == 3 || throw(DimensionMismatch())
@boundscheck size(linear, 1) == 3 || throw(DimensionMismatch())
@boundscheck size(angular, 2) == size(linear, 2) || throw(DimensionMismatch())
new{A}(body, base, frame, angular, linear)
end
end
# GeometricJacobian-specific functions
@inline function GeometricJacobian(
body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::A, linear::A) where {A<:AbstractMatrix}
GeometricJacobian{A}(body, base, frame, angular, linear)
end
@inline function GeometricJacobian(
body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::A1, linear::A2) where {A1<:AbstractMatrix, A2<:AbstractMatrix}
GeometricJacobian(body, base, frame, promote(angular, linear)...)
end
@inline function GeometricJacobian{A}(jac::GeometricJacobian) where A
GeometricJacobian(jac.body, jac.base, jac.frame, A(angular(jac)), A(linear(jac)))
end
change_base(jac::GeometricJacobian, base::CartesianFrame3D) = GeometricJacobian(jac.body, base, jac.frame, angular(jac), linear(jac))
Base.:-(jac::GeometricJacobian) = GeometricJacobian(jac.base, jac.body, jac.frame, -angular(jac), -linear(jac))
function Base.show(io::IO, jac::GeometricJacobian)
print(io, "GeometricJacobian: body: \"$(string(jac.body))\", base: \"$(string(jac.base))\", expressed in \"$(string(jac.frame))\":\n$(Array(jac))")
end
"""
$(SIGNATURES)
Transform the `GeometricJacobian` to a different frame.
"""
@inline function transform(jac::GeometricJacobian, tf::Transform3D)
@framecheck(jac.frame, tf.from)
R = rotation(tf)
ang = R * angular(jac)
lin = R * linear(jac) + colwise(×, translation(tf), ang)
GeometricJacobian(jac.body, jac.base, tf.to, ang, lin)
end
struct PointJacobian{M <: AbstractMatrix}
frame::CartesianFrame3D
J::M
end
Base.@deprecate PointJacobian{M}(J::M, frame::CartesianFrame3D) where {M<:AbstractMatrix} PointJacobian(frame, J)
Base.@deprecate PointJacobian(J::AbstractMatrix, frame::CartesianFrame3D) PointJacobian(frame, J)
# Construct/convert to Matrix
(::Type{A})(jac::PointJacobian) where {A<:Array} = A(jac.J)
Base.convert(::Type{A}, jac::PointJacobian) where {A<:Array} = A(jac)
Base.eltype(::Type{PointJacobian{M}}) where {M} = eltype(M)
Base.transpose(jac::PointJacobian) = Transpose(jac)
function point_velocity(jac::PointJacobian, v::AbstractVector)
FreeVector3D(jac.frame, jac.J * v)
end
function LinearAlgebra.mul!(τ::AbstractVector, jac_transpose::Transpose{<:Any, <:PointJacobian}, force::FreeVector3D)
jac = parent(jac_transpose)
@framecheck jac.frame force.frame
mul!(τ, transpose(jac.J), force.v)
end
function Base.:*(jac_transpose::Transpose{<:Any, <:PointJacobian}, force::FreeVector3D)
jac = parent(jac_transpose)
@framecheck jac.frame force.frame
transpose(jac.J) * force.v
end
"""
$(TYPEDEF)
A twist represents the relative angular and linear motion between two bodies.
The twist of frame ``j`` with respect to frame ``i``, expressed in frame ``k``
is defined as
```math
T_{j}^{k,i}=\\left(\\begin{array}{c}
\\omega_{j}^{k,i}\\\\
v_{j}^{k,i}
\\end{array}\\right)\\in\\mathbb{R}^{6}
```
such that
```math
\\left[\\begin{array}{cc}
\\hat{\\omega}_{j}^{k,i} & v_{j}^{k,i}\\\\
0 & 0
\\end{array}\\right]=H_{i}^{k}\\dot{H}_{j}^{i}H_{k}^{j}
```
where ``H^{\\beta}_{\\alpha}`` is the homogeneous transform from frame
``\\alpha`` to frame ``\\beta``, and ``\\hat{x}`` is the ``3 \\times 3`` skew
symmetric matrix that satisfies ``\\hat{x} y = x \\times y`` for all
``y \\in \\mathbb{R}^3``.
Here, ``\\omega_{j}^{k,i}`` is the angular part and ``v_{j}^{k,i}`` is the
linear part. Note that the linear part is not in general the same as the
linear velocity of the origin of frame ``j``.
"""
struct Twist{T}
body::CartesianFrame3D
base::CartesianFrame3D
frame::CartesianFrame3D
angular::SVector{3, T}
linear::SVector{3, T}
@inline function Twist{T}(body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractVector, linear::AbstractVector) where T
new{T}(body, base, frame, angular, linear)
end
end
"""
$(TYPEDEF)
A spatial acceleration is the time derivative of a twist.
See [`Twist`](@ref).
"""
struct SpatialAcceleration{T}
body::CartesianFrame3D
base::CartesianFrame3D
frame::CartesianFrame3D
angular::SVector{3, T}
linear::SVector{3, T}
@inline function SpatialAcceleration{T}(body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractVector, linear::AbstractVector) where T
new{T}(body, base, frame, angular, linear)
end
end
for MotionSpaceElement in (:Twist, :SpatialAcceleration)
@eval begin
# Construct with possibly eltype-heterogeneous inputs
@inline function $MotionSpaceElement(body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractVector, linear::AbstractVector)
T = promote_eltype(angular, linear)
$MotionSpaceElement{T}(body, base, frame, angular, linear)
end
# Construct given FreeVector3Ds
function $MotionSpaceElement(body::CartesianFrame3D, base::CartesianFrame3D, angular::FreeVector3D, linear::FreeVector3D)
@framecheck angular.frame linear.frame
$MotionSpaceElement(body, base, angular.frame, angular.v, linear.v)
end
# Construct/convert given another $MotionSpaceElement
function $MotionSpaceElement{T}(m::$MotionSpaceElement) where T
$MotionSpaceElement(m.body, m.base, m.frame, SVector{3, T}(angular(m)), SVector{3, T}(linear(m)))
end
function Base.show(io::IO, m::$MotionSpaceElement)
print(io, "$($(string(MotionSpaceElement))) of \"$(string(m.body))\" w.r.t \"$(string(m.base))\" in \"$(string(m.frame))\":\nangular: $(angular(m)), linear: $(linear(m))")
end
function Base.isapprox(x::$MotionSpaceElement, y::$MotionSpaceElement; atol = 1e-12)
x.body == y.body && x.base == y.base && x.frame == y.frame && isapprox(angular(x), angular(y); atol = atol) && isapprox(linear(x), linear(y); atol = atol)
end
@inline function Base.:+(m1::$MotionSpaceElement, m2::$MotionSpaceElement)
@framecheck(m1.frame, m2.frame)
@boundscheck begin
((m1.body == m2.body && m1.base == m2.base) || m1.body == m2.base) || throw(ArgumentError("frame mismatch"))
end
$MotionSpaceElement(m2.body, m1.base, m1.frame, angular(m1) + angular(m2), linear(m1) + linear(m2))
end
Base.:-(m::$MotionSpaceElement) = $MotionSpaceElement(m.base, m.body, m.frame, -angular(m), -linear(m))
change_base(m::$MotionSpaceElement, base::CartesianFrame3D) = $MotionSpaceElement(m.body, base, m.frame, angular(m), linear(m))
function Base.zero(::Type{$MotionSpaceElement{T}}, body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D) where {T}
$MotionSpaceElement(body, base, frame, zero(SVector{3, T}), zero(SVector{3, T}))
end
Base.zero(m::$MotionSpaceElement) = zero(typeof(m), m.body, m.base, m.frame)
function Random.rand(::Type{$MotionSpaceElement{T}}, body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D) where {T}
$MotionSpaceElement(body, base, frame, rand(SVector{3, T}), rand(SVector{3, T}))
end
# GeometricJacobian * velocity vector --> Twist
# GeometricJacobian * acceleration vector --> SpatialAcceleration
function $MotionSpaceElement(jac::GeometricJacobian, x::AbstractVector)
$MotionSpaceElement(jac.body, jac.base, jac.frame, convert(SVector{3}, angular(jac) * x), convert(SVector{3}, linear(jac) * x))
end
end
end
"""
$(SIGNATURES)
Transform the `Twist` to a different frame.
"""
@inline function transform(twist::Twist, tf::Transform3D)
@framecheck(twist.frame, tf.from)
ang, lin = transform_spatial_motion(angular(twist), linear(twist), rotation(tf), translation(tf))
Twist(twist.body, twist.base, tf.to, ang, lin)
end
# log(::Transform3D) + some extra outputs that make log_with_time_derivative faster
function _log(t::Transform3D)
# Proposition 2.9 in Murray et al, "A mathematical introduction to robotic manipulation."
rot = rotation(t)
p = translation(t)
# Rotational part of local coordinates is simply the rotation vector.
aa = AngleAxis(rot)
θ, axis = rotation_angle(aa), rotation_axis(aa)
ϕrot = θ * axis
# Translational part from Bullo and Murray, "Proportional derivative (PD) control on the Euclidean group.",
# (2.4) and (2.5), which provide a closed form solution of the inverse of the A matrix in proposition 2.9 of Murray et al.
θ_2 = θ / 2
sθ_2, cθ_2 = sincos(θ_2)
θ_squared = θ^2
if abs(rem2pi(θ, RoundNearest)) < eps(typeof(θ))
α = one(θ_2)
ϕtrans = p
else
α = θ_2 * cθ_2 / sθ_2
ϕtrans = p - ϕrot × p / 2 + (1 - α) / θ_squared * ϕrot × (ϕrot × p) # Bullo, Murray, (2.5)
end
ξ = Twist(t.from, t.to, t.to, ϕrot, ϕtrans) # twist in base frame; see section 4.3
ξ, θ, θ_squared, θ_2, sθ_2, cθ_2, α
end
"""
$(SIGNATURES)
Express a homogeneous transform in exponential coordinates centered around the
identity.
"""
function Base.log(t::Transform3D)
first(_log(t))
end
"""
$(SIGNATURES)
Compute exponential coordinates as well as their time derivatives in one shot.
This mainly exists because ForwardDiff won't work at the singularity of `log`.
It is also ~50% faster than ForwardDiff in this case.
"""
function log_with_time_derivative(t::Transform3D, twist::Twist)
# See Bullo and Murray, "Proportional derivative (PD) control on the Euclidean group.", Lemma 4.
# This is truely magic.
# Notation matches Bullo and Murray.
@framecheck(twist.body, t.from)
@framecheck(twist.base, t.to)
@framecheck(twist.frame, twist.body) # required by Lemma 4.
X, θ, θ_squared, θ_over_2, sθ_over_2, cθ_over_2, α = _log(t)
ψ = angular(X)
q = linear(X)
ω = angular(twist)
v = linear(twist)
ψ̇ = ω
q̇ = v
if abs(rem2pi(θ, RoundNearest)) > eps(typeof(θ))
β = θ_over_2^2 / sθ_over_2^2
A = (2 * (1 - α) + (α - β) / 2) / θ_squared
B = ((1 - α) + (α - β) / 2) / θ_squared^2
adψ̇, adq̇ = se3_commutator(ψ, q, ω, v)
ad2ψ̇, ad2q̇ = se3_commutator(ψ, q, adψ̇, adq̇)
ad3ψ̇, ad3q̇ = se3_commutator(ψ, q, ad2ψ̇, ad2q̇)
ad4ψ̇, ad4q̇ = se3_commutator(ψ, q, ad3ψ̇, ad3q̇)
ψ̇ += adψ̇ / 2 + A * ad2ψ̇ + B * ad4ψ̇
q̇ += adq̇ / 2 + A * ad2q̇ + B * ad4q̇
end
Ẋ = SpatialAcceleration(X.body, X.base, X.frame, ψ̇, q̇)
X, Ẋ
end
"""
$(SIGNATURES)
Convert exponential coordinates to a homogeneous transform.
"""
function Base.exp(twist::Twist)
# See Murray et al, "A mathematical introduction to robotic manipulation."
@framecheck(twist.frame, twist.base) # twist in base frame; see section 4.3
ϕrot = angular(twist)
ϕtrans = linear(twist)
θ = norm(ϕrot)
if abs(rem2pi(θ, RoundNearest)) < eps(typeof(θ))
# (2.32)
rot = one(RotMatrix3{typeof(θ)})
trans = ϕtrans
else
# (2.36)
ω = ϕrot / θ
rot = RotMatrix(AngleAxis(θ, ω[1], ω[2], ω[3], false))
v = ϕtrans / θ
trans = ω × v
trans -= rot * trans
trans += ω * dot(ω, v) * θ
end
Transform3D(twist.body, twist.base, rot, trans)
end
@inline function LinearAlgebra.cross(twist1::Twist, twist2::Twist)
@framecheck(twist1.frame, twist2.frame)
ang, lin = se3_commutator(angular(twist1), linear(twist1), angular(twist2), linear(twist2))
SpatialAcceleration(twist2.body, twist2.base, twist2.frame, ang, lin)
end
"""
$(SIGNATURES)
Given the twist ``T_{j}^{k,i}`` of frame ``j`` with respect to frame ``i``, expressed in frame ``k``,
and the location of a point fixed in frame ``j``, also expressed in frame ``k``, compute the velocity
of the point relative to frame ``i``.
"""
function point_velocity(twist::Twist, point::Point3D)
@framecheck twist.frame point.frame
FreeVector3D(twist.frame, angular(twist) × point.v + linear(twist))
end
"""
$(SIGNATURES)
Given the twist ``dot{T}_{j}^{k,i}`` of frame ``j`` with respect to frame ``i``, expressed in frame ``k``
and its time derivative (a spatial acceleration), as well as the location of a point fixed in frame ``j``,
also expressed in frame ``k``, compute the acceleration of the point relative to frame ``i``.
"""
function point_acceleration(twist::Twist, accel::SpatialAcceleration, point::Point3D)
@framecheck twist.base accel.base
@framecheck twist.body accel.body
@framecheck twist.frame accel.frame
FreeVector3D(accel.frame, angular(accel) × point.v + linear(accel) + angular(twist) × point_velocity(twist, point).v)
end
# SpatialAcceleration-specific functions
"""
$(SIGNATURES)
Transform the `SpatialAcceleration` to a different frame.
The transformation rule is obtained by differentiating the transformation rule
for twists.
"""
function transform(accel::SpatialAcceleration, old_to_new::Transform3D, twist_of_current_wrt_new::Twist, twist_of_body_wrt_base::Twist)
# trivial case
accel.frame == old_to_new.to && return accel
# frame checks
@framecheck(old_to_new.from, accel.frame)
@framecheck(twist_of_current_wrt_new.frame, accel.frame)
@framecheck(twist_of_current_wrt_new.body, accel.frame)
@framecheck(twist_of_current_wrt_new.base, old_to_new.to)
@framecheck(twist_of_body_wrt_base.frame, accel.frame)
@framecheck(twist_of_body_wrt_base.body, accel.body)
@framecheck(twist_of_body_wrt_base.base, accel.base)
# 'cross term':
ang, lin = se3_commutator(
angular(twist_of_current_wrt_new), linear(twist_of_current_wrt_new),
angular(twist_of_body_wrt_base), linear(twist_of_body_wrt_base))
# add current acceleration:
ang += angular(accel)
lin += linear(accel)
# transform to new frame
ang, lin = transform_spatial_motion(ang, lin, rotation(old_to_new), translation(old_to_new))
SpatialAcceleration(accel.body, accel.base, old_to_new.to, ang, lin)
end